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1 Introduction

This contribution reconsiders the continuous time Dasgupta-Heal-Solow-Stiglitz (Dasgupta and Heal

1974, Solow 1974 and Stiglitz 1974, DHSS from here on) model extended to include exogenous

technical change and depreciation in reproducible man-made capital as has been proposed by Dixit

et al. (1980, DHH from here on). We search for a closed-form solution to the model that maximizes

a utilitarian criterion that allows for subsistence consumption in the spirit of Stone (1954) and Geary

(1950). Subsistence consumption can be associated with the standard of living covering the mental

and physical needs of life (Sharif 1986). Moreover, subsistence consumption also corresponds to the

concept of the poverty line that can be used to quantify the proportion of society’s absolutely poor

members. In other words, at low-income levels, the propensity to save is low since biological needs

such as nutrition have to be covered. As a consequence, the elasticity of intertemporal substitution

approaches zero when consumption is close to the survival level. Unsurprisingly, the requirement to

cover basic needs affects the growth process of a country as well as Stone (1954) and Geary (1950)

type of preferences can generate humped-shaped growth rates (King and Rebelo (1989)).

This contribution also adds to the discussion on sustainability in the presence of scarce re-

sources. A frequently cited concept of sustainability originating from the Brundtland Report (WCED

1987) puts forward the aim to “make development sustainable to ensure that it meets the needs of the

present without compromising the ability of future generations to meet their own needs”. Stone-Geary

preferences ensure that consumption never falls short of a minimum subsistence level. If one is will-

ing to interpret meeting needs as guaranteeing a particular minimum consumption or basic needs to

which the Brundtland Report also refers, our results are helping to judge whether sustainable devel-

opment in the presence of necessary resources is feasible. Yet, there are other interpretations and

concepts of sustainability. We contribute to the discussion by evaluating the closed-form solution re-

garding several sustainability indicators. We do so both theoretically and empirically in the calibration

of the model to scenarios relevant to resource-rich low-income countries. We can comprehensively

do this as we take account of technical change explicitly (see e.g. Pezzy 2004).

We contribute further to the existing literature in the following ways. First, we augment the DHSS

model not only by technical change and depreciation which has been done elsewhere but also by the

introduction of minimum subsistence consumption. It will be shown that only under certain endow-

ment situations, i.e. requirements for initial stocks of reproducible capital and the resource, a solution

to the problem exists. Third, the ability to fully characterize the dynamics and initial conditions for an

economy allows us to calibrate our model to situations relevant to low-developed but resource-rich

countries. This allows us to judge whether a particular endowment scenario is sufficient for a solution

to the economic problem to exist and how such a solution is characterized.

Typical linearization techniques around a steady state wouldn’t allow for this as the problem can

not be solved for the initial values of the state variables. Second, we provide a technical contribution

regarding closed-form solutions for the full dynamics of an economy using special functions such as
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the Gaussian hypergeometric function that allows us to fully compute the (global) complex transitional

dynamics without relying on local approximation techniques around the steady-state as usually done

in the literature. Finally, our approach is utilitarian by nature as we investigate households maximizing

a discounted utility stream. As will be seen below, the presence of subsistence consumption leads the

economy in some cases to asymptotically approach an egalitarian consumption path characterized

by the generalized Hartwick (1977) investment rule formulated by Dixit et al. (1980). We, there-

fore, add to the literature initiated already by Solow (1974) on economic rules leading to egalitarian

consumption paths motivated by utilitarian maximization problems.

Our findings are as follows. Solving the model in closed-form allows us to pin down the initial co-

state variables for the dynamic optimization problem. This in turn allows for a full characterization of

conditions under which a solution to the economic problem exists. Subsistence consumption implies

particular minimum requirements for initial endowments with reproducible man-made capital and

resources. If these are not met, the economy is not able to cover subsistence consumption. Focusing

on the steady state, we find that the equilibrium can be governed by zero or positive growth. The latter

occurs if the rate of exogenous technical change exceeds the rate of time preference. In the former

case, we can show that Hartwick’s investment rule applies in a steady state. Finally, we calibrate

the model for developing but resource-rich countries and trace the full dynamic development of the

economy. Furthermore, we evaluate this full adjustment process regarding several sustainability

indicators.

The plan of the paper is as follows. The next section reviews literature relevant to our contribution.

Section 3 lays out the economic problem that we aim to solve and Section 4 presents the solution and

elaborates on the solution’s existence properties. We provide a calibration of our model in Section 5

and, finally, we discuss and conclude in Section 6.

2 Review of Literature

The DHSS model has been subject to research until today by several authors. The Cobb Douglas

constant returns to scale production structure with reproducible man-made capital and resource input

has been employed by e.g. Antony and Klarl (2018), Benchekroun and Withagen (2011), Asheim and

Buchholz (2004) and others. Mitra et al (2013) employ general constant returns to scale technology

with reproducible man-made capital and resource input. Extensions of the model covering depre-

ciation of capital and exogenous technical change have been put forward first in the DHH model.

Extensions also considering endogenous resource augmenting technical change can be found in

e.g. Groth (2007). Antony and Klarl (2018) introduce a minimum subsistence level of consumption in

a utilitarian approach to the DHSS model without capital depreciation and technical change.

The DHSS model has been used in Hartwick’s (1977) contribution and the resulting Hartwick’s

investment rule has been subject to ongoing research as well. It is well known, that this rule demands

rents from resource extraction to be invested into a reproducible man-made stock of capital. Equiv-
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alently, the value of net investments or genuine savings equals zero at all points in time (see e.g.

Hamilton and Atkinson 2006). The generalized Hartwick rule was first deduced from the DHH model

and states that an egalitarian consumption path implies that the value of net investments or genuine

savings is constant at all points in time but not equal to zero.

Egalitarian consumption paths and Hartwick’s investment rule concerning utilitarian objectives

have been put forward on the research agenda already in Solow (1974). Solow (1974) was showing

that Rawls (1971) maximin criterion can be fulfilled by an egalitarian consumption path. Asheim and

Buchholz (2004) analyzed undiscounted and discounted utility streams with exogenous restrictions

to households’ preferences as utilitarian objective functions. They work out under what conditions

or restrictions maximization of the objective functions implies the economy follows Hartwick’s invest-

ment rule. Antony and Klarl (2018) show that maximizing discounted utility with Stone-Geary-type

preferences leads asymptotically to Hartwick’s investment rule as consumption approaches its min-

imum subsistence level from above. We note that only a few contributions provide utilitarian criteria

that justify the adoption of Hartwick’s investment rule.

The asymptotic result in Antony and Klarl (2018) is to be expected as it can be shown that any

competitive egalitarian path in a DHSS model with stationary technology must fulfill Hartwick’s in-

vestment rule (Bucholtz et al. 2005, Withagen and Asheim 1998). Mitra (2002) already showed

that Hartwick’s investment rule is a necessary condition for such an egalitarian consumption path.

Related to these paths, Mitra et al. (2013) provide necessary and sufficient conditions for the pro-

duction technique to ensure that from any historical starting point a constant positive consumption

stream results. Within a standard exhaustible resource model, Mitra (2015) proves the efficiency and

uniqueness of non-trivial maximin paths. Comparable results regarding the generalized Hartwick rule

in the DHH model can be found in Heijnen (2008) and Sato and Kim (2002). These findings become

relevant in the present contribution for some cases where the economy approaches an asymptotically

egalitarian path.

Others e.g. Asheim and Buchholz (2004) regard only paths with non-decreasing consumption

as sustainable. The World Bank uses genuine savings as an indicator for sustainable development

(see e.g. Hamilton and Naikal 2014).1 To investigate the question of sustainability closer, we adopt

the approach originally introduced by Weitzman (1976) and augmented by Weitzman (1997) to cover

cases with exogenous technical change.

Our contribution touches upon the discussion on sustainability in the presence of non-renewable

resources. It is beyond the scope of this section to fully review this strand of the literature. For a

recent review regarding the relationship between sustainability, genuine savings, and Hartwick’s in-

vestment rule see Hanley et al. (2015). Asheim and Buchholz (2004) regard any consumption path

characterized by non-decreasing consumption as sustainable. Such paths can be derived from a

discounted utilitarian maximization problem subject to restrictions exogenous to households’ pref-

1For an overview of such approaches see e.g. Hanley et al. (2015).
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erences. In contrast, Stone-Geary preferences guarantee a minimum level of consumption where

the necessary restriction on consumption is already implied by preferences. As pointed out in the

introduction, one might be willing to interpret consumption not falling below a minimum subsistence

level to fulfill some sustainability concepts. More precisely, the question would be whether a non-

monotonic consumption path that is strictly above a minimum subsistence level could be regarded as

sustainable development. Holden et al. (2014) provide a broad review of the concept of sustainabil-

ity and sustainable development. They give an interpretation of the Brundtland Report that regards

development sustainable if basic human needs are guaranteed in an intergenerational way. Any aspi-

ration beyond these needs can only be regarded as sustainable if long-term ecological sustainability

is respected. Focusing on the extraction and consumption of non-renewable resources, one is there-

fore left with the question of whether the asymptotic exhaustion of such a resource combined with

consumption asymptotically approaching basic needs from above is indeed satisfying this interpreta-

tion. Genuine savings is favored by the World Bank for analyzing questions related to sustainability

(see e.g. Hamilton and Naikal 2014).

Pezzy (2004) criticizes some approaches to sustainability as they are not comprehensive. To be

comprehensive, one needs to take into account the possibility of autonomous technical change. Our

contribution contains a non-stationary technology with exogenous technical change. Our analytical

solutions allow us to apply Weitzman’s (1997) test on temporary sustainability and sustainable devel-

opment along the whole adjustment trajectory of the economy. We do so by adopting the approach

originally introduced by Weitzman (1976) and augmented by Weitzman (1997) to cover cases with

exogenous technical change. Weitzman’s approach has been developed within an environment with

a constant interest rate. We adopt it by transferring the implied sustainability test to the case of non-

constant interest rates during adjustment periods. It is not the aim of this contribution to fully answer

all the questions surrounding sustainability. However, we would like to contribute to the discussion on

possible answers.

Although the analyzed DHSS/DHH setting extended by subsistence consumption is complex due

to a non-homothetic instantaneous utility function, it allows for a closed-form solution if one indeed

exists. The present model is a natural extension of the model presented by Antony and Klarl (2018)

discussing a Ramsey economy for the case where the rate of technical progress, as well as the

depreciation rate on reproducible capital, is zero. From a technical point of view, the contribution

is related to recent publications also using special functions to solve dynamic economic problems.

Hiraguchi (2014) solves a Ramsey problem with leisure as one argument of the utility function. The

solution involves the Gaussian hypergeometric function. The same function appears in Boucekkine

and Ruiz-Tamarit (2008), Boucekkine et al. (2008), Ruiz-Tamarit (2008), Hiraguchi (2009) solving Lu-

cas types models. Guerrini (2010) uses the Gaussian hypergeometric function to solve the problem

of an AK Ramsey economy with logistic population growth. Regarding problems related to environ-

mental economics, Perez-Barahona (2011) uses the Gaussian hypergeometric function to solve an

AK Ramsey problem with scarce resources. The exponential Integral is found in the explicit solutions
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to a basic DHSS model without technical change and capital depreciation in Benchekroun and With-

agen (2011). The formal representations involved in solving the problem we pose are most similar to

the ones found in Boucekkine and Ruiz-Tamarit (2008).

Economically, our analysis is also related to the growth literature. Strulik (2010) and Steger

(2000) solve a utility maximization problem with Stone-Geary preferences without considering natural

resources necessary for production. They instead focus only on an AK type of production technology

and present closed-form solutions for the entire adjustment path of the economy. Their models are

nested in ours if one is setting the output elasticity of the resource equal to zero. Mathematically, we

implicitly also make use of what is known as the mathematical concept of a viability kernel. As we

can solve the entire dynamics of the model economy, we are also able to exactly solve the conditions

regarding the initial endowment of the economy for a solution to exist. These conditions form the

viability kernel (for an economic application of this concept related to resource problems see e.g.

Martinet and Doyen, 2007).

3 Subsistence Consumption in the DHSS Model

In this section, we lay out the intertemporal utilitarian problem that we aim to solve. Preliminary

calculations are presented that are helpful in finding a solution to the problem provided one exists.

3.1 The Problem

The Economy is populated by a mass 1 of infinitely living representative households with the following

Stone-Geary intertemporal utility function

Ut =

∫ ∞

0

(Ct − C)1−η − 1

1−η
e−ρt d t, (1)

where Ct is actually realized consumption at time t , C is the minimum subsistence level of con-

sumption, η > 0 and ρ > 0 is the rate of time preference. We will refer to Ct − C as excess

consumption in the sense that is taking place in excess of subsistence consumption. C can be in-

terpreted as a given preference parameter that characterizes people’s very basic needs. Satisfying

basic needs is not creating any utility, only consumption exceeding this level contributes to people’s

well-being.

We consider a social planer to maximize households’ lifetime utility given the relevant budget con-

straints. These constraints are given, first, by the accumulation of reproducible capital, and second,

by the use of a non-renewable resource that is necessary for production. For the analysis to be con-

clusive, subsistence consumption needs to be exogenous also from the social planner’s perspective.

We will elaborate further down below on the admissible domain for C that allows for the existence of a

solution to the planer’s problem. This allows us to find out how the initial endowment of the economy
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with resources and capital relates to the admissible level of minimum subsistence consumption. It

will also be shown how C is related to an (eventually asymptotic) egalitarian consumption path and

how high subsistence consumption could be at maximum given initial endowments.

We assume that production is given by the aggregate Cobb-Douglas production technology

Yt = Kαt (AtRt)
1−α, (2)

where Kt denotes the accumulated level of reproducible capital, Rt is resource use and 0< α <

1. At is the level of technology which we assume to grow at rate γ, i.e. At = A0eγt , with A0 > 0 as

the initial level of technology. With specification (2), we have constant returns to scale with respect to

capital and resource input Rt as e.g. in Benchekroun and Withagen (2011) or Asheim and Buchholz

(2004). One might interpret Kt not only to represent physical but also any kind of reproducible capital

as e.g. human capital. This last interpretation would allow also labor to participate in production.

Reproducible capital is produced from foregone final output with unit productivity and depreciates

at a rate δ > 0. The net increase in the stock of reproducible capital is therefore

∂ Kt

∂ t
= K̇t = Yt − Ct −δKt . (3)

Production requires the use of Rt units of a non-renewable resource at time t . The stock St of

the resource develops according to

Ṡt = −Rt . (4)

The present value Hamiltonian for the representative household, therefore, reads as

Ht =
(Ct − C)1−η − 1

1−η
e−ρt +λt[Yt − Ct −δKt] +µt[−Rt], (5)

where the co-states λt and µt can be interpreted as the shadow values of reproducible capital

and the resource. The necessary first-order conditions for a maximum read as

∂ Ht

∂ Ct
= (Ct − C)−ηe−ρt −λt = 0, (6)

−
∂ Ht

∂ Kt
= λ̇t = −λt

∂ Yt

∂ Kt
+λtδ, (7)

∂ Ht

∂ Rt
= λt

∂ Yt

∂ Rt
−µt = 0, (8)

−
∂ Ht

∂ St
= µ̇t = 0. (9)

(6) and (8) equate marginal utility of consumption with marginal cost of consumption in terms
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of forgone capital accumulation and the marginal product of resources with the marginal cost of

resource depletion. The price of the resource in terms of final output is given by pR,t =
µt
λt

. It is then

easy to verify that (7) and (9) give rise to Hotelling’s rule, i.e. the resource price needs to grow in

optimum at a rate that equals the marginal product of capital net of depreciation.

The corresponding transversality conditions are

lim
t→∞

λt Kt = 0, (10)

lim
t→∞

µtSt = 0, (11)

These conditions are characterizing an optimal solution as the second derivatives of Ht with

respect to controls and states are all non-positive and the Mangasarian as well as Arrow‘s sufficiency

theorem applies. As usual, the transversality conditions imply that the limiting values of capital and

resources are both zero.

The production function and (8) imply

Yt = Kt

�

AtRt

Kt

�1−α
= Kt

�

λt(1−α)
µt

At

�
1−α
α

. (12)

This representation is useful as it provides us with intuition why an explicit solution can be found

despite the complexity of the problem. (12) implies that production is of the AK type given the shadow

values of capital and resources. AK models are known to provide us with explicit solutions in many

cases as the behavior of the interest rate in such cases is typically analytically traceable and in many

applications the marginal productivity of capital is simply constant. A constant marginal productivity

can’t be expected in our case. If, however, λt
µt

can be expressed as a function of t alone, we can also

represent the marginal productivity of capital as a function of time which is very helpful in finding the

complete explicit solution to our problem.

From (9) we can easily deduce that µt = µ0 for all t . Using (7) and (8), we find λt to develop

according to2

λt = eδt
�

λ
α−1
α

0 + (1−α)
1−α
α A

1−α
α

0 µ
α−1
α

0
α

γ+δ

�

e
1−α
α (γ+δ)t − 1
�

�
α
α−1

, (13)

which shows that the co-states can be represented as a function of t alone. Additionally, (13)

is useful as it gives the development of marginal utility of consumption in excess of subsistence

consumption C .

2See Appendix A at the end of the paper for the details on the derivations.
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3.2 Preliminary Calculations

The next step is now to solve for the development of the capital stock Kt . Readers not interested in

the details behind the solution might skip the following and proceed directly with Proposition 1 further

down below. Using (3) and (13) in (12), this stock develops as

K̇t = Yt − Ct −δKt = Kt

�

�

λt(1−α)
µ0

At

�
1−α
α

−δ

�

− (Ct − C)− C .

This first-order differential equation can be solved explicitly as λt has the explicit solution (13)

which also gives excess consumption Ct − C as a function of t alone via (6). To see this, rewrite this

first-order differential equation as

K̇t + f (t)Kt = g(t), (14)

with

f (t) = −

�

�

λt(1−α)
µ0

At

�
1−α
α

−δ

�

,

g(t) = −(Ct − C)− C = −λ
− 1
η

t e−
ρ
η t − C ,

where − f (t) is the net productivity of reproducible capital at time t , i.e. Yt
Kt
− δ. We denote the

initial stock of capital at t = 0 by K0. The solution to the differential equation (14) is given by

Kt = K0e−
∫ t

0 f (z)dz +

∫ t

0

g(z)e−
∫ t

z f (s)dsdz. (15)

Appendix B at the end of the paper shows that the compounded capital productivity net off de-

preciation between time z and t satisfies

−
∫ t

z f (s)ds = −δ(t − z) +
1

1−α
ln

�

ϕ1 +ϕ2

�

eψt − 1
�

ϕ1 +ϕ2

�

eψz − 1
�

�

(16)

with

ϕ1 =
�

λ0(1−α)A0

µ0

�
α−1
α

, ϕ2 =
α

γ+δ
, ψ=

1−α
α
(γ+δ).

ϕ1, ϕ2 andψ serve the purpose of simplifying the notation. From condition (8) and (12) it follows

that ϕ1 =
K0
Y0

, i.e. the inverse of the initial capital productivity. Further down below we will show

that ϕ2 = (limt→∞
Yt
Kt
)−1, i.e. the inverse of the asymptotic capital productivity. Furthermore, it will

also be helpful to define ζ= ϕ2−ϕ1
ϕ2

=
Y0
K0
−limt→∞

Yt
Kt

Y0
K0

as the relative distance of the asymptotic capital
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productivity from its initial value at time 0. The transitional dynamics of the model’s variables are

depending crucially on the value of ζ. Its deviation from zero measures the initial distance from a

balanced growth path which is influencing the transitional dynamics of the economy significantly as

will be shown further down below.

At this point it is also instructive to introduce the variable x t = e−ψt as an affine function of time

t . As time t develops form 0 to∞, the variable x t ranges between 1 and 0. This makes it possible

to solve the model analytically along the domain of x t using the Gaussian hypergeometric function.

Using (16) in (15) gives the stock of capital Kt as3

Kt = K0e−δt(1− ζ)−
1

1−α

�

x t

1− ζx t

�− 1
1−α

(17)

−
C0 − C

ψ
e−δt(1− ζ)−

α
(1−α)η

�

x t

1− ζx t

�− 1
1−α
∫ 1

x t

x
− 1
ψ

�

(η−1)δ−ρ
η + α−η1−α

ψ
η

�

−1
z (1− ζxz)

α−η
η(1−α) d xz

−
C

ψ
e−δt
�

x t

1− ζx t

�− 1
1−α
∫ 1

x t

x
− 1
ψ

�

δ− ψ
1−α

�

−1
z (1− ζxz)

− 1
1−α d xz .

(17) traces out the entire dynamics of the economy’s reproducible capital stock. The three com-

ponents of (17) are representing, first, the positive contribution of the initial capital stock K0 through

production in capital accumulation, and second, the negative contributions of using production par-

tially for consumption purposes. The latter can be divided into the part caused by consumption in

excess of subsistence needs, Ct − C and a part caused by the needs to cover C . Given the model’s

parameters, the entire path is characterized by the initial endowment K0, ζ, and the initial consump-

tion choice C0. Section 4 will show how C0 together with ζ are pined down by initial endowments. If

it were by chance that ζ = 0, i.e. the initial and asymptotic capital productivity coincides, we would

encounter an economy that starts in steady-state right away where capital productivity, and hence

the interest rate, is a constant. Unsurprisingly, the expressions in (17) would simplify a great deal

if this case prevails. As the first order conditions (6) and (8) imply λ0,µ0 > 0, we necessarily find

ζ < 1.

Appendix B at the end of the paper demonstrates that the integrals in (17) - as long as they

converge - can be computed using the Gaussian hypergeometric function 2F1(a, b; c; z) which has

in general the integral representation

2F1(a, b; c; z) =
Γ (c)

Γ (b)Γ (c − b)

∫ 1

0

t b−1(1− t)c−b−1(1− zt)−ad t. (18)

This integral representation is valid for ℜ(c) > ℜ(b) > 0 where ℜ(·) denotes the real part of

3It is interesting to note that the integral in the second term of (17) simplifies very much in case α = η. It is exactly this
case that is discussed in Smith (2006) who presents a closed-form solution to the Ramsey problem for α= η.
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the argument and Γ (·) the Gamma function (Abramowitz and Stegun, 1964, 15.3.1). In general,

2F1(a, b; c; z) defined as a Gauss series (Abramowitz and Stegun, 1964, 15.1.1) converges ifℜ(c−
b − a) > 0 for |z| ≤ 1 and if −1 < ℜ(c − b − a) ≤ 0 for |z| ≤ 1 but z ̸= 1. Comparing the integral

on the right-hand side of (18) with the integrals in (17) reveals that the present case can be seen as

a special case with c − b− 1= 0 or equivalent c = b+ 1.

If we apply the representation (18) to our problem, ζ will play the role of z. Admissible values for

the initial co-state variables, i.e. λ0 > 0 and µ0 > 0 (see the first order conditions (6) and (8)), imply

ζ < 1. If λ0 is sufficiently small and/or µ0 is sufficiently large, it might turn out that ζ ≤ −1. In this

case, one has to take care about how to compute the integrals in (17) or other integrals of the same

type that appear further down below. This is because the integral representation (18) is an analytic

continuation of the Gaussian hypergeometric function defined by a Gauss series (Abramowitz and

Stegun 1972, 15.3.1). Only for the restrictions on z and ℜ(c − b − a) laid out above, both are

identical. In general, for z ≤ −1 and ℜ(c) > ℜ(b) > 0 , the integral (18) exists but the Gauss

series that defines the hypergeometric function is not converging and, hence, it is not identical to

the integrals that we aim to compute. In such cases, it is necessary to use analytic continuation

formulas for 2F1(a, b; c; z) (see Abramowitz and Stegun 1972, 15.3.3 through 15.3.9). For a general

discussion about this situation see Section 3.1 in Boucekkine and Ruiz-Tamarit (2008).

We, therefore, make notational use of

2F1(a, b; b+ 1; z) =
Γ (b+ 1)
Γ (b)Γ (1)

∫ 1

0

t b−1(1− t)c−b−1(1− zt)−ad t

=
Γ (b+ 1)
Γ (b)Γ (1)

∫ 1

0

t b−1(1− zt)−ad t

= b

∫ 1

0

t b−1(1− zt)−ad t,

where we keep in mind that z ≤ −1 needs special attention. Here we apply the continuation of

the gamma function Γ (b + 1) = bΓ (b) and the fact that Γ (1) = 1 (Abramowitz and Stegun, 1964,

6.1.15). Inspecting (17) shows that we can apply this special case of the Gaussian hypergeometric

function to both integrals. Through a suitable change in the variable of integration, the integrals

ranging from x t to 1 can be split up into two separate integrals each running from 0 to 1 and each

representable by the hypergeometric function. We are ready to formulate the following proposition on

the development of Kt .
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Proposition 1: The optimal path for the capital stock Kt is given by

Kt = K0e−δt(1− ζ)−ã2

�

x t

1− ζx t

�−ã2

(19)

−
C0 − C

ψ
e−δt(1− ζ)ã1−ã2

�

x t

1− ζx t

�−ã2 2F1(ã1, b̃1; b̃1 + 1;ζ)− x b̃1
t 2F1(ã1, b̃1; b̃1 + 1;ζx t)

b̃1

−
C

ψ
e−δt
�

x t

1− ζx t

�−ã2 2F1(ã2, b̃2; b̃2 + 1;ζ)− x b̃2
t 2F1(ã2, b̃2; b̃2 + 1;ζx t)

b̃2

,

with

ã1 =
η−α
η(1−α)

, b̃1 = 1+
α[(η− 1)γ+ρ]
(1−α)(δ+ γ)η

,

ã2 =
1

1−α
, b̃2 = 1+

αγ

(1−α)(γ+δ)
> 1.

Proof: Appendix B.

Note: As above, this representation allows us to trace the origins of the model’s dynamics. We find

a decaying influence of the initial endowment K0 (first term). This is combined with an increasing

influence of consumption in excess of its minimum subsistence level and the influence of constant

subsistence consumption itself (second and third term). The special function 2F1(.) is involved inde-

pendently of whether C = 0 or not.

At this point, a view words on the admissible values for the model’s parameters are in order. Later

on, during inspecting the transversality conditions for the present optimization problem, it will become

clear that b̃1, b̃2 > 1 need to be fulfilled for the transversality conditions to hold. It is obvious that

this imposes the restriction γ > 0 in case of b̃2. b̃1 > 1 implies further restrictions for the model’s

parameter. We will return to this issue further below where we deal with the transversality conditions

in full detail. The variable ζ depends via ϕ1 on the initial values of the co-state variables, i.e. λ0 and

µ0. The first-order conditions (6) through (8) require λ0,µ0 > 0 which in turn implies ζ < 1.

With the development of the capital stock Kt at hand, we can now immediately proceed with

the second input factor, the use of the resource Rt . This is particularly straightforward as Rt =
�

λt (1−α)
µ0

At

�
1
α Kt

At
=
� pR,t

(1−α)At

�− 1
α Kt

At
which follows directly from equations (12) and (8).
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Proposition 2: The optimal path for resource depletion Rt is given by

Rt = R0 x−1
t (20)

−ϕ−ã2
2 x−1

t A−1
0





C0 − C

ψ
(1− ζ)ã1−ã2 2F1(ã1, b̃1; b̃1 + 1;ζ)− x b̃1

t 2F1(ã1, b̃1; b̃1 + 1;ζx t)

b̃1

+
C

ψ

2F1(ã2, b̃2; b̃2 + 1;ζ)− x b̃2
t 2F1(ã2, b̃2; b̃2 + 1;ζx t)

b̃2



 ,

with R0 =
� pR,0

(1−α)A0

�− 1
α K0

A0
.

Proof: Appendix C.

Proposition 2 gives resource depletion a weighting function of its initial value R0 and the resources

needed to cover consumption in excess of its minimum subsistence level and what is needed to cover

C from t = 0 onward. This can be seen as x t ranges from 1 to 0 as t passes by and the two terms

involving the hypergeometric function equaling 0 for t = 0.

As we now know the extent of resource extraction, it is natural to proceed with the development

of the economy’s resource stock St . By assumption, St = S0 −
∫ t

0 Rzdz.

Proposition 3: The resource stock St follows the optimal path given by

St = S0 −
∫ t

0

Rzdz,

with
∫ t

0

Rzdz =
R0

ψ

1− x t

x t
(21)

−ϕ−ã2
2

C0 − C

ψ2
(1− ζ)ã1−ã2

1
A0

�

1− x t

x t

2F1(ã1, b̃1; b̃1 + 1;ζ)

b̃1

−2F1(ã1, b̃1 − 1; b̃1 + 1;ζ)− x b̃1−1
t 2F1(ã1, b̃1 − 1; b̃1 + 1;ζx t)

b̃1(b̃1 − 1)





−ϕ−ã2
2

C

ψ2

1
A0

�

1− x t

x t

2F1(ã2, b̃2; b̃2 + 1;ζ)

b̃2

−2F1(ã2, b̃2 − 1; b̃2 + 1;ζ)− x b̃2−1
t 2F1(ã2, b̃2 − 1; b̃2 + 1;ζx t)

b̃2(b̃2 − 1)



 .

Proof: Appendix D.
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Propositions 1 and 3 will be needed in the following section to solve for the initial co-states λ0

and µ0. These values are necessary to pin down initial consumption and initial resource use. The

remaining results from this section are then required to trace the model’s dynamics for t > 0.

Propositions 1 and 2 can finally be used to trace final output production Yt given by (2) as repro-

ducible capital and resources are the only endogenous input.

In order to complete our preliminary calculations, we look at consumption Ct .

Proposition 4: Consumption Ct follows the optimal path given by

Ct = (C0 − C)(1− ζ)ã1−ã2 x
γ−ρ
γ+δ (ã1−ã2)
t (1− ζx t)

ã2−ã1 + C (22)

Proof: The result in Proposition 4 follows from inserting (13) into (6) and using the definition of x t .

4 Solving the DHSS Model

The preceding section developed the dynamics for all the important quantities in the economy under

consideration. In order to solve the model and to trace out the full dynamics, we need to determine

the initial values for the co-state variables λ0 and µ0 given the initial endowment of the economy, i.e.

K0 and S0. As will be shown, with knowledge about λ0 and µ0 it is possible to solve for C0, R0 and,

hence, also Y0. The key to this are the transversality conditions with respect to the state variable.

4.1 Transversality

The transversality conditions (10) and (11) are necessary for the solution of the problem to charac-

terize an optimum. For the capital stock, limt→∞λt Kt = 0 needs to be fulfilled. Furthermore, the

second transversality condition demands limt→∞µtSt = µ0 limt→∞ St = 0. This gives rise to the

following lemma.

Lemma 1: The initial stocks of capital, K0, and resources, S0, need to fullfil

K0 =
C0 − C

ψ
(1− ζ)ã1 2F1(ã1, b̃1; b̃1 + 1;ζ)

b̃1

+
C

ψ
(1− ζ)ã2 2F1(ã2, b̃2; b̃2 + 1;ζ)

b̃2

, (23)

S0 =
ϕ
−ã2
2

ψ2A0

�

(C0 − C)(1− ζ)ã1−ã2 2F1(ã1, b̃1 − 1; b̃1 + 1;ζ)

b̃1(b̃1 − 1)
+ C 2F1(ã2, b̃2 − 1; b̃2 + 1;ζ)

b̃2(b̃2 − 1)

�

.(24)

Proof: Appendix E for (23) and F for (24).
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Expression (24) implies several parameter restrictions. The first ones are about the parameter

combinations b̃1 and b̃2. For transversality (both conditions) to hold and to be meaningful, b̃1−1> 0

and b̃2 − 1 > 0 must be satisfied. Only then the underlying integrals behind the hypergeometric

functions in (24) converge and are finite. b̃1 − 1 > 0 requires (η − 1)γ + ρ > 0 which demands,

ceteris paribus, a high rate of time preference, a high η or a low elasticity of intertemporal substitution

if the rate of technical progress γ is positive. That only γ≤ 0 is in accordance with the transversality

condition (24) becomes obvious as only in this case, b̃2 − 1> 0 is satisfied.

We can ask ourselves what would happen if b̃1 − 1 < 0. In such a case, no finite initial capital

stock K0 would be able to meet the economy’s needs to allow for a consumption path guaranteeing

at least minimum subsistence consumption over the infinite time horizon. The same would apply to

the case b̃2 − 1 < 0. This case, however, could only prevail in case of technical regress which we

ruled out right from the beginning.

Expressions (23) and (24) are two nonlinear equations in the two still unknowns λ0 and µ0. Both

equations depend on these unknowns via the definition of ϕ1 and ζ, i.e. ϕ1 =
�

λ0(1−α)A0
µ0

�
α−1
α

and

ζ= ϕ2−ϕ1
ϕ2

.

4.2 Initial Co-State Variables

The non-linearity of (23) and (24) does not allow for an explicit solution for λ0 and µ0. This subsection

shows that the equilibrium, provided that it exists, is unique and that λ0 and µ0 characterize the

optimum solution of our problem in terms of initial conditions for t = 0.

To see this, we define the following additional quantities by decomposing the transversality con-

ditions (23) and (24)

K+0 =
C0 − C

ψ
(1− ζ)ã1 2F1(ã1, b̃1; b̃1 + 1;ζ)

b̃1

, (25)

K0 =
C

ψ
(1− ζ)ã2 2F1(ã2, b̃2; b̃2 + 1;ζ)

b̃2

, (26)

S+0 = ϕ
−ã2
2

C0 − C

ψ2
(1− ζ)ã1−ã2

1
A0

2F1(ã1, b̃1 − 1; b̃1 + 1;ζ)

b̃1(b̃1 − 1)
, (27)

S0 = ϕ
−ã2
2

C

ψ2

1
A0

2F1(ã2, b̃2 − 1; b̃2 + 1;ζ)

b̃2(b̃2 − 1)
. (28)

In economic terms, these four quantities have the following interpretation. K+0 and S+0 are the

parts of the initial endowment with capital and resources that are necessary in optimum to allow for

consumption in excess of the subsistence level, i.e. Ct − C . K0 and S0 are the necessary endow-

ments allowing for subsistence consumption C given the household’s choice for the path of excess

consumption Ct − C . The equations just above give the optimum division of the initial endowments
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into the components necessary for subsistence and excess consumption. It is clear that both K0−K0

and S0 − S0 need to be positive. Otherwise, initial endowments are simply insufficient to allow for

subsistence consumption C .

The four additional quantities are fully determined by the initial values λ0 and µ0 which pin down,

first, their ratio via ϕ1 and by that also ζ. Given ζ, the system can be solved for the levels of λ0 and

µ0 as (55) and (27) also depend on µ0 alone besides ζ.

From the above four definitions, it follows that

K+0
S+0

= ϕ
ã2
2 ψ(b̃1 − 1)A0(1− ζ)ã2 2F1(ã1, b̃1; b̃1 + 1;ζ)

2F1(ã1, b̃1 − 1; b̃1 + 1;ζ)
(29)

and

K0 − K0

S0 − S0
=

K0 −
C
ψ(1− ζ)

ã2 2F1(ã2,b̃2;b̃2+1;ζ)
b̃2

S0 −
C
ψ2ϕ

−ã2
2

1
A0

2F1(ã2,b̃2−1;b̃2+1;ζ)
b̃2(b̃2−1)

. (30)

To find ζ0 that solves for an equilibrium, we note that this ζ0 needs to fulfill

K0 − K0

S0 − S0
=

K+0
S+0

. (31)

Proposition 5: If there exists a solution ζ0 to the equilibrium condition
K0−K0
S0−S0

=
K+0
S+0

with ζ0 < 1,

this solution is unique.

Proof: Appendix G making use of Lemma 1.

Appendix G proves that
K+0
S+0

is decreasing and
K0−K0
S0−S0

is increasing (constant) for C > 0 (C = 0)

in ζ for ζ < 1.

The properties of the right-hand side of (31) defined in (29) are limζ→−∞
K+0
S+0
→∞ and limζ→1

K+0
S+0
=

0. If subsistence consumption C would be zero, the left hand side of (31) would be constant at K0
S0
> 0.

In this case, a solution always exists. However, once C > 0, there is the possibility that no solution

exists. This happens whenever initial endowment with capital K0 and the resource S0 are too low.

Sufficient initial endowments allow for K0 − K0 > 0 and S0 − S0 > 0 which imposes restrictions on

admissible values for ζ. Define ζ as the value for ζ that solves K0 − K0 = 0, where K0 is given

by (26). Appendix G shows that such ζ < 1 always exists for C > 0. Only ζ ≥ ζ are admissible

candidates for a solution as otherwise K0 is insufficient to guarantee subsistence consumption. On

the other hand, a ζ too large may turn S0−S0 negative. We define ζ̄ as the largest possible value for
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ζ that prevents S0 − S0 from becoming non-positive (see the Appendix for the detailed derivations),

i.e.

ζ̄=ζ≤1 |S0 − S0|=ζ≤1

�

�

�

�

�

S0 −
ϕ
−ã2
2 C

ψ2

1
A0

2F1(ã2, b̃2 − 1; b̃2 + 1;ζ)

b̃2(b̃2 − 1)

�

�

�

�

�

.

It can be shown that S0 − S0 is decreasing in ζ for C > 0 and ζ ≤ 1. Hence, ζ̄ is bounded from

above by one.

Whenever we find initial endowments and model parameters to imply ζ≤ ζ̄, we are faced with a

situation that possesses a unique solution. Whenever ζ > ζ̄ prevails, there is no solution and initial

endowments with K0 and S0 are too low. In particular, they are too low to allow for consumption to

meet at least its minimum subsistence level. In case C → 0, we find ζ → −∞ and ζ̄ → 1. ζ

together with ζ̄ define a viability kernel as in Martinet and Doyen (2007) as they decide on whether a

solution to the problem exists or not.

4.3 Transitional Dynamics

Given the initial values for the co-state variables µ0,λ0 and ζ0 which are unique if a solution exists,

we are able to trace out the transitional dynamics of all model’s variables. We discuss below the

paths for Ct , Kt , Rt and St . This is done by using Proposition 4 and Lemma 1 in the Propositions

1 through 3. As they can be computed explicitly, we can fully characterize the model’s stable arm

towards the steady state.

Applying Proposition 4 to the solution ζ0 gives the path of consumption as

Ct = (C0 − C)(1− ζ0)
ã1−ã2 x

(ã1−ã2)
γ−ρ
γ+δ

t (1− ζ0 x t)
−(ã1−ã2) + C . (32)

Looking at (32) reveals that consumption can take quite different developments depending on the

quantities ρ and γ as well as ζ0. Remember that as t grows, x t decreases from 1 towards 0. For

ζ0 > 0, i.e. an initial capital productivity above its asymptotic value, we oberserve a non-monotonic

consumption path with a maximum if the rate of time preference ρ exceeds the rate of technical

change γ. Households are too impatient to allow for steady positive consumption growth. Instead,

consumption in general first grows and peaks at t∗ = 1
ψ ln
�

ζ0
γ+δ
ρ−γ

�

before converging asymptotically

to C . This can be easily affirmed by solving ∂ Ct
∂ t = 0 and it is obvious that t∗ only exists for the case

ρ > γ.

For ζ0 < 0, we can also observe a non-monotonic behavior if ρ < γ. This case corresponds

to a situation where the economy is initially endowed with a relatively large capital stock and initial

capital productivity below it steady state level. Consumption then reaches a minimum at t = t∗ as the

relatively high initial capital stock is depleted by relativly high initial consumption. From its minimum
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onward, consumption is permanently growing at positive rates.4 In all other cases we observe a

monotonic consumption. In particular, if ρ < γ and ζ0 > 0, we observe a monotonic behavior of

consumption. Consumption steadily increases and converges against a growth path with the positive

growth rate γ−ρ
η . In case it happens that ρ = γ applies, consumption also behaves monotonic but

converges against a constant value larger than subsistence consumption.

Using Lemma 1 and Proposition 1, the development of the capital stock Kt turns out to follow

(see Appendix E)

Kt =
C0 − C

ψ
(1− ζ0)

ã1−ã2 x
(ã1−ã2)

γ−ρ
γ+δ

t (1− ζ0 x t)
ã2 2F1(ã1, b̃1; b̃1 + 1;ζ0 x t)

b̃1

(33)

+
C

ψ
(1− ζ0 x t)

ã2 2F1(ã2, b̃2; b̃2 + 1;ζ0 x t)

b̃2

.

The stock of reproducible capital shares qualitatively the behavior of consumption. In case of

ρ > γ it is characterized by non-monotonic behavior with a peak at in general t ̸= t∗. Whether the

peak appears earlier compared with consumption, depends on the household’s preferences. It can

be shown that capital peaks earlier in the (unlikely) case η ≤ α. In case η > α, the peak can occur

earlier or later.

Resource extraction can be calculated as Rt =
�

λt (1−α)
µ0

At

�
1
α Kt

At
by using (13) and (33). Re-

source extraction steadily declines as t passes by. Using (21) and (24), the resource stock St con-

sequently develops according to (see Appendix F which uses Lemma 1 in Proposition 3)

St =
ϕ
−ã2
2

ψ2A0

�

(C0 − C)(1− ζ)ã1−ã2 x b̃1−1
t

2F1(ã1, b̃1 − 1; b̃1 + 1;ζ0 x t)

b̃1(b̃1 − 1)

+ C x b̃2−1
t

2F1(ã2, b̃2 − 1; b̃2 + 1;ζ0 x t)

b̃2(b̃2 − 1)

�

.

Of course, St steadily declines and approaches 0 asymptotically.

Output is given by Yt = Kαt (AtRt)1−α which can now easily be computed with the results at

hand. Using Rt =
�

λt (1−α)
µ0

At

�
1
α Kt

At
, (13) and the definitions of x t = e−ψt and ζ gives

Yt =
Kt

ϕ2
(1− ζ0 x t)

−1. (34)

Output shares qualitatively the dynamic properties of consumption and the stock of reproducible

capital. Yt displays monotonic dynamics in case γ ≥ ρ. For ρ > γ the behavior is again non-

4The existence of non-monotonicity in consumption is independent of whether C = 0 or C > 0. The value for t∗ is,
however, affected by C indirectly through its dependence on ζ0. One can show that the peak can occur earlier (later) for
ζ0 > 0 (ζ0 < 0) if C is higher and the initial endowment K0 is large. With a low K0, the opposite happens.
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monotonic with a single peak before output continuously declines. From (34) it also becomes clear

that ζ0 measures the relative distance of the steady state capital productivity from its initial position

at t = 0. Solving (34) for ζ0 at t = 0, gives ζ0 =
Y0
K0
− 1
ϕ2

Y0
K0

with x0 = 1. Furthermore, (34) reveals that

ζ0 x t measures the relative distance of the steady state capital productivity from its position at time

t . As x t = e−ψt with ψ = 1−α
α (γ+ δ), ψ can be interpreted as a decay constant with an implied

half life of ln(2)
ψ = α

1−α
ln(2)
γ+δ .

Given (34) and the definition of ϕ2, also the net rate of return for reproducible capital can easily

be computed as

rt = α
Yt

Kt
−δ =

γ+δ
1− ζ0 x t

−δ. (35)

The value of extracted resources at time t is given by pR,tRt and is given by (1 − α)Yt as

production is Cobb-Douglas. We can follow genuine savings or net investments It = Yt−Ct−δKt−
pR,tRt and the net investment rate it = 1 − Ct

Yt
− δ Kt

Yt
− pR,t Rt

Yt
numerically. Its interesting limiting

properties are discussed in the following subsection.

4.4 Limiting Behavior and Steady-State

Our economy approaches its steady-state as t → ∞ or alternatively x t → 0. Considering the

dynamic behavior of Ct , Kt and Yt given by (32), (33) and (34) as t →∞ reveals that the growth

rates of these three variables approach γ−ρ
η in case γ ≥ ρ. In this case, the three variables grow

at a non-negative rate ad infinitum and the influence of subsistence consumption on the economy’s

growth rate vanishes asymptotically. In such a case, the economy will never be confronted with

problems related to poverty. If γ ≤ ρ, however, the growth rates of Ct , Kt and Yt tend to zero as the

influence of C does not vanish.5

The limiting behavior of Ct can easily be calculated by evaluating (32) for x t → 0. It follows that

lim
t→∞

Ct











= C , Ċt
Ct
→ 0 for ρ > γ,

= (C0 − C)(1− ζ0)ã1−ã2 + C , Ċt
Ct
→ 0 for ρ = γ,

→∞, Ċt
Ct
→ γ−ρ

η for ρ < γ.

Using (33) for the capital stock as t →∞ (x t → 0) gives

5In this case, e.g. the variable Ct − C and the parts of Kt and Yt not involved covering subsistence consumption grow

at rate γ−ρ
η which is negative here.
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lim
t→∞

Kt















= C
ψb̃2
≡ K , K̇t

Kt
→ 0 for ρ > γ,

= C0−C
ψb̃1
(1− ζ0)ã1−ã2 + C

ψb̃2
, K̇t

Kt
→ 0 for ρ = γ,

→∞, K̇t
Kt
→ γ−ρ

η for ρ < γ,

which, using (34), implies for output Yt

lim
t→∞

Yt















= C
ψϕ2 b̃2

≡ Y , Ẏt
Yt
→ 0 for ρ > γ,

= C0−C
ψϕ2 b̃1

(1− ζ0)ã1−ã2 + C
ψϕ2 b̃2

, Ẏt
Yt
→ 0 for ρ = γ,

→∞, Ẏt
Yt
→ γ−ρ

η for ρ < γ.

Naturally, the transversality conditions imply that limt→∞ St = 0 and consequently also limt→∞ Rt =

0.

Finally, we turn to genuine savings or net investment It . Inspecting the limiting behavior of Yt , Ct

and Kt above reveals that we find rather different limiting characteristics for It depending on γ and

ρ. Using the definitions of ψ, ϕ2 and b̃2 gives

lim
t→∞

It = lim
t→∞

(Yt − Ct −δKt − pR,tRt)

(

= − C
b̃2

, İt
It
→ 0 for ρ ≥ γ,

→∞, İt
It
→ γ−ρ

η for ρ < γ.

In case γ ≤ ρ we find limt→∞ It = −
C
b̃2

which is constant.6 Hence, in the limit we find the

generalized Hartwick rule fulfilled (Dixit et al. 1980). We note that genuine savings are asymptotically

negative for C > 0. We just note the result of constant genuine savings but do not want to interpret

it here with respect to some sustainability criterion. We are digging deeper into the sustainability

discussion in the next sections. In case γ > ρ we find non-constant genuine savings which is an

implication of the growing levels of consumption, output and reproducible capital. In the latter case,

one can calculate the limiting rate of genuine savings as limt→∞
It
Yt
= α γ−ρ

(γ+δ)η − (1−α) which can

be positive or negative depending on parameter values.

Investments into reproducible capital, K̇t , behave as follows. In case γ≤ ρ, we find limt→∞ K̇t =

0. As Yt and Kt become asymptotically stationary in this case, we find resource extraction in the limit

to decline at the same rate as the level of technology grows. Technical change exactly compensates

for the necessary reduction in resource use. For γ > ρ, limt→∞
K̇t
Yt
= α γ−ρ

(γ+δ)η > 0. Now, technical

change is that large that it leads asymptotically to positive growth in the reproducible capital stock.

Related to investments is the rate of return given in (35). From inspecting (35), one can see that

6Obviously, for C = 0 we find limt→∞ It = 0 as well. In case γ ≤ ρ and zero subsistence consumption we find
Hartwick’s (1977) rule asymptotically at an egalitarian zero consumption path.
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the net rate of return for reproducible capital approaches the rate of technical change in the limit, i.e.

limt→∞ rt = limt→∞
∂ Yt
∂ Kt
−δ = γ.

4.5 Sustainability

It is clear from the preceding section how to trace consumption and genuine savings. Looking at

consumption in Section 4.3, we found for γ < (>)ρ a non-monotonic behavior with a maximum

(minimum). If non-declining consumption is regarded as an indicator for sustainability, an economy in

such a case would be categorized as behaving in an unsustainable way after the consumption peak

or before its minimum.

Additionally, during our calibration in the next section, we apply Weitzman’s (1976,1997) sustain-

ability test on the economy’s consumption pattern. For this, we need to adjust Weitzman’s theoretical

idea to our setting. In the original publications of Weitzman (1976,1997), an economy with a constant

and given interest rate is analyzed. This simplifies the necessary computations considerably but lim-

its, of course, applicability. As we can trace out the full transitional dynamics of the economy, we are

able to adopt Weitzman’s idea along the complete adjustment path with a non-constant interest rate.7

The idea behind this sustainability test is to compute a hypothetical consumption trajectory as

a sustainability benchmark. Weitzman refers to this benchmark as the present value consumption

annuity. To arrive at this benchmark, one computes a constant value for consumption that is in its

present value equal to the present value of the welfare-maximizing consumption path. It is against

which we compare the welfare-maximizing consumption choice of the representative household. As

we take into account minimum subsistence consumption, we apply Weitzman’s idea on the consump-

tion in excess of its subsistence level.

Besides the notion for this benchmark as a present value equivalent annuity, Weitzman offers

an alternative intuitive interpretation. As the benchmark is a present value, it can also be seen as a

weighted average of the underlying welfare-maximizing consumption trajectory. The weight for each

consumption value simply corresponds to its discount factor.

We are looking at our economy at time t and denote the present value (PV ) of a constant

excess consumption as PV (C̄t − C)t , where we compute the present value over all points s in time

running from t up to infinity. Note that C̄t is the constant present value consumption annuity and

it is carrying a time subscript as this constant consumption level depends on time t from which we

start our computations. Consequently, the present value of welfare-maximizing excess consumption

is denoted by PV (Cs − C)t for s ∈ [t,∞). Mathematically, the critical benchmark value for the

sustainability test is obtained by equating PV (C̄t − C)t with PV (Cs − C)t and solving for C̄t .

According to Weitzman (1976,1996), sustainability at time t is given if Ct − C ≤ C̄t − C whereas

7Weitzman states in a footnote that other discount rates besides a constant interest rate could be considered in his
approach although he “would hate to be the one who has to make such recalculations in practice" (Weitzman, 1997, fn. 6,
p. 6).
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we can speak of sustainable development if the whole trajectory satisfies Cs − C ≤ C̄s − C for all

s ∈ [t,∞). Weitzman’s intuition behind C̄t is that it represents an annuity equivalent that is identical

in its PV to Cs and is by construction never declining. C̄t is then a hypothetical consumption level

from time t onward, while the economy was following its welfare-maximizing consumption path up to

time t .

Given the trajectory for the interest rate used for discounting, an exchange between welfare-

maximizing consumption and its present value annuity would be possible. As Weitzman notes, how-

ever, such an exchange is in general hypothetical and does not need to be attainable at the economy-

wide level. It is guaranteed attainable just at the margin, i.e. for an infinitesimal small consumer not

able to influence developments in the interest rate. In our setting, attainability of C̄t depends on the

parameters of the model. We show below that attainability is not always guaranteed in our setting.

Appendix H at the end of the paper shows that we can compute C̄t − C as

C̄t − C = (1− ζ0)
ã1−ã2(C0 − C)

b̃2 − 1

b̃1 − 1
2F1(ã1 − 1, b̃1 − 1; b̃1;ζ0 x t)

2F1(ã2 − 1, b̃2 − 1; b̃2;ζ0 x t)
x
(ã1−ã2)

γ−ρ
γ+δ

t , (36)

where C0 is initial (welfare-maximizing) consumption at time 0.

For t →∞, we arrive at the steady state where we find

lim
t→∞

C̄t − C =











0 for ρ > γ,

(1− ζ0)ã1−1(C0 − C) r
r−g for ρ = γ,

(1− ζ0)ã1−1(C0 − C) r
r−g limt→∞ x

(ã1−ã2)
γ−ρ
γ+δ

t for ρ < γ.

(37)

where r = γ is the steady state interest rate and g = 1
η(γ−ρ) is the steady state growth rate of

the economy.8

From Section 4.4 we know that optimal consumption behaves as

lim
t→∞

Ct − C =











0 for ρ > γ,

(1− ζ0)ã1−1(C0 − C) for ρ = γ,

(1− ζ0)ã1−1(C0 − C) limt→∞ x
(ã1−ã2)

γ−ρ
γ+δ

t for ρ < γ.

(38)

Comparing actual consumption (38) as t →∞ with the benchmark given by (37), shows that

Weitzman’s sustainability criterion is fulfilled in steady state in all the cases considered. This is un-

surprising from the mathematical perspective as ρ ≤ γ is equivalent to g ≥ 0. It is also unsurprising

from the intuitive perspective as the steady state is either characterized by constant or increasing

8The parameter restrictions discussed in Section 3.2 ensure that r − g > 0.
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consumption. Whether such a conclusion holds along the whole adjustment trajectory, i.e. compar-

ing Ct − C with (36) for all t is a numerical case-specific question that we consider in the calibration

during the following section.

Before proceeding with our calibration, we need to investigate the issue of the present value

annuity’s attainability. As mentioned already above, attainability might not be given and this could

render the test at least questionable from the practical perspective. We might consider defining

the sustainability benchmark differently and in an attainable way. Define Cmax
t as the maximum

constant level of consumption from t onward. This consumption level would be equal to the maximum

subsistence level that is just affordable for the economy given its endowment Kt and St .

Alternatively, Cmax
t can also be viewed as welfare-maximizing consumption for the case η→∞

if a solution to the problem exists. Intertemporal utility (1) then corresponds to the maximin criterion

resulting in constant consumption maximizing welfare. If a solution exists (Lemma 1), Cmax
t is also

attainable. Appendix H shows that

Cmax
t − C = (1− ζ0)

ã1−ã2(C0 − C)
b̃2

b̃1

2F1(ã1, b̃1; b̃1 + 1;ζ0 x t)

2F1(ã2, b̃2; b̃2 + 1;ζ0 x t)
x
(ã1−ã2)

γ−ρ
γ+δ

t . (39)

The maximum constant level of consumption from t = 0 onward can be computed as Cmax
0 =

ψK0(1− ζ0)−ã2 b̃2

2F1(ã2,b̃2;b̃2+1;ζ0)
.

Comparing Cmax
t and C̄t in (36) reveals that

Cmax
t − C

C̄t − C
=

b̃1 − 1

b̃1

b̃2

b̃2 − 1
2F1(ã1, b̃1; b̃1 + 1;ζ0 x t)

2F1(ã2, b̃2; b̃2 + 1;ζ0 x t)
2F1(ã2 − 1, b̃2 − 1; b̃2;ζ0 x t)

2F1(ã1 − 1, b̃1 − 1; b̃1;ζ0 x t)
. (40)

Cmax
t −C
C̄t−C can be larger or smaller than unity depending on the model’s parameters. A value below

unity corresponds to the case where Weitzman’s present value annuity is unattainable as it would

exceed the maximum possible constant consumption Cmax
t . We can show analytically that this a

relevant case as t →∞ as

lim
t→∞

Cmax
t − C

C̄t − C
=

b̃1 − 1

b̃1

b̃2

b̃2 − 1
,

which is below unity for γ > ρ (see Appendix H).

In case C̄t is attainable, it is very well possible that Cmax
t > C̄t . If this happens, Weitzman’s

present value annuity is not the maximum possible constant consumption. A higher value for con-

sumption would be permanently attainable given the economy’s endowment.

Given this section’s discussion surrounding attainability of sustainable benchmarks, we conduct

a test in addition to Weitzman’s original test by using Cmax
t instead of C̄t . We regard a development

as sustainable for all instances in time for which Ct − C ≤ Cmax
t − C holds.

The discussion until now focused on the social planer problem. One could also ask what type
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policy would implement a constant consumption profile Cmax
t for t ∈ [0,∞). This requires our

problem to be interpreted as a problem of a representative household that internalizes its influence

on the total resource stock St . One possible policy is a consumption tax with a time varying rate

and an instantaneous redistribution of the tax revenues. The household does not internalize the

consequences of its consumption choice on this transfer payment. To derive the behavior of such a

tax consider the modified Hamiltonian

Ht =
(Ct − C)1−η − 1

1−η
e−ρt +λt[Yt − pt Ct −δKt + Et] +µt[−Rt],

where pt is the price of final output used for consumption including the tax and Et the transfer

payment from the tax collecting government at time t . Et is exogenous to the individual representative

household. This modification only affects one of the first order conditions. (6) would now read as

∂ Ht

∂ Ct
= (Ct − C)−ηe−ρt −λt pt = 0.

If the consumption tax would be set to induce a price development ṗt
pt
= rt − ρ, the household

would voluntarily chose for constant consumption equal to Cmax
t . This tax policy would prevent e.g.

a peaking consumption profile as it reduces the incentive for an initially increasing consumption path.

As the tax drives up consumption prices pt in the future, households are not longer foregoing present

for the sake of higher future consumption.9

5 Implications for Resource-Rich Economies

This section uses the above findings to analyze the full adjustment path of the model economy cali-

brated to the situation of resource-rich low-income economies. Given that we can pin down the initial

conditions for the solution to the problem, we can calibrate the model using recent World Bank data

on endowments with produced and natural capital.

5.1 Calibration

Regarding households’ preferences, ρ, η, and C need to be specified. The rate of time preference

is a parameter that is frequently calibrated. We feel that an extensive discussion on this parameter’s

value is not necessary. We will chose ρ = 0.03 which seems to be a common choice also used in

e.g. Benchekroun and Withagen (2011).

There exist some contributions to the literature that calibrate the type of Stone-Geary utility func-

tion that is used in the present context. Achury et al. (2012) calibrate an intertemporal utility function

9This result holds as only the first-order condition (6) is affected but not (7)-(9). The mentioned tax policy then only alters

the resulting Keynes-Ramsey rule to produce 0 consumption growth as λ̇t
λt
= −(rt −ρ) still holds. The transfer payment

Et then allows for capital accumulation that gives rise to Cmax
t as the optimal constant consumption choice.
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identical to the present one in (1) for the US and use η = 1
0.23 which is roughly equal to 4.3. They

refer to their choice of η as a standard choice in the portfolio literature. Ogaki et al. (1996) provide

estimates for 1
η ranging from 0.569 up to 0.646 corresponding to η decreasing from about 1.68 down

to 1.55. Alavarez-Pelaez and Diaz (2005) are calibrating η in a range from 1.5 up to 2.5 in their

application of Stone-Geary preferences. Ravn et al. (2006, 2008) analyze the influence of subsis-

tence points such as subsistence consumption on the dynamics of macroeconomic development in

general. Despite this, their specification for intertemporal utility is in accordance with the present

situation. During calibration of their models, they use a value of 2 for η. Regarding the choices for η,

we follow Ravn et al. (2006, 2008) with a value of 2. This is an intermediate value that is in between

what has been used in Alavarez-Pelaez and Diaz (2005) and Achury et al. (2012).

Regarding our model with a constant C, we consider the absolute poverty used be the World

bank.10 As of today, the threshold for extreme absolute poverty is set at 1.90 US $ at 2011 prices at

purchasing power parity (PPP) a day available to an individual for covering basic needs (Ferreira et

al. 2016). By now, this is considered to apply to low-income countries. 11 We convert these numbers

into yearly values at prices of 2014. We do so as we are using below the most recent numbers on

resource endowments available for 2014. This gives a poverty line of 730.56 US$ at PPP.12

The output elasticity of resource use Rt is, given the Cobb-Douglas production technology (2),

equal to the share αR of natural resource rents in GDP. Data on the share of non-renewable resource

rents in GDP is available from the World Bank.13

Table 1 provides a summary of the data for different groups of countries classified according

to the country’s level of income. It is visible that the resource dependence increases as income

decreases. Resources seem to be most important for low-income countries. We, therefore, focus on

this particular group in the following.

As we will see below, the labor income share in GDP will be necessary as well for our calibration.

Numbers for the labor income share in GDP in 2014 were taken from the Penn World Tables 9.0. For

the labor share, we cannot observe a clear pattern and observe values on average a little bit above

10Values for subsistence consumption have also been proposed in Koulovatianos et al. (2007) and Atkeson and Ogaki
(1996) which have been used also in Achury et al. (2012) and Ogaki et al. (1996). These numbers, however, reflect very
specific countries which don’t seem to be in accordance with our analysis. Additionally, investigating poverty lines in this
context is interesting as they influence economic policy initiatives, especially in low-income countries (see e.g. the United
Nation’s Sustainable Development Goal on poverty, https://www.un.org/sustainabledevelopment/).

11Additionally, the World Bank recently introduced two additional poverty lines applying to lower- and upper- middle-
income countries at 3.20 US $ and 5.50 US $ per day at 2011 prices and PPP. For the calculation behind these numbers
see Joliffe and Prydz (2016) furthermore provide an absolute poverty level for high-income countries at 21.70 US $ per day
at 2011 prices and PPP.

12Price changes are taken into account by using the implicit GDP deflator obtained by dividing the time series for GDP at
PPP valued at constant and current prices for low-income countries available at https://data.worldbank.org/i
ndicator/NY.GDP.PCAP.PP.KD and https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD.
This results in a growth in prices of 5.34% between 2011 and 2014.

13Data are available from the World Bank Data Base at https://data.worldbank.org/indicator/NY.GDP.TOTL.RT.ZS. For
the details on how the numbers are derived see World Bank (2011). Natural resource rents are the sum of oil, natural gas,
coal (hard and soft), mineral, and forest rents.

https://www.un.org/sustainabledevelopment/
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD
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resource rents’ share in GDP, αR labor income share in GDP, αL

number countries 2010-2016 number countries 2014
Low-income 34 13.15 15 51.30
Lower-middle income 47 5.92 26 52.87
Upper-middle income 56 6.29 37 47.94
High-income 79 1.90 55 52.79
World 216 3.38 133 51.29

Table 1: Resource rents and labor income share in GDP in %
Note: Averages of resource rents are reported in percentages of GDP over indicated period of time. Data source https://data
.worldbank.org/indicator/NY.GDP.TOTL.RT.ZS. Labor income share from the Penn World Tables 9.0 (variable labsh,
https://www.rug.nl/ggdc/productivity/pwt/) for 2014. Country classification in accordance with the World Bank’s
classification scheme available at https://datahelpdesk.worldbank.org/knowledgebase/articles/906519.

0.5 with only moderate variation.14 We therefore calibrate the labor income share αL at 0.51, i.e. the

world’s average value found in Table 1.

In the course of calibration, reasonable numbers for the initial stocks of natural resources and

reproducible capital have to be found. The World Bank (2018) provides estimates for stocks of pro-

duced, natural and human capital up to 2014 in US $. This is part of a quite comprehensive cross

country database on what the World Bank terms “The Wealth of Nations”. Although it is clear that

such a database provides estimates only, the data are the best available and can be of use for the

present purpose Tabel 2 gives a summary of the data for 2014 in per capita terms. Values in int. $

at 2014 prices were calculated by the implicit PPP exchange rate obtained from GDP data in US $ at

current prices and at PPP and current prices.15

2014 in US$ 2014 in int. $ at PPP
produced capital 1,967 4,753
human capital 5,564 13,446
natural capital (incl. land) 6,421 15,517
natural capital (excl. land) 1,236 2,987
net foreign assets -322 -778

Table 2: Capital/resource stock estimates 2014 per capita for low-income countries
Note: World Bank (2018, Appendix B) estimates for stocks of different types of capital per capita in 2014 US $. High-income values
are averaged values (weighted by population) for OECD and non-OECD high-income countries reported in World Bank (2018, p. 233).
Produced capital: machinery, equipment, structures, urban land; natural capital (incl. land): energy resources (oil, natural gas, hard
coal, lignite), mineral resources (bauxite, copper, gold, iron, lead, nickel, phosphate, silver, tin, zinc), timber resources, nontimber forest
resources, crop land, pasture land, protected areas. natural capital (excl. land): natural capital (incl. land) less of crop land, pasture land,
protected areas. Human capital estimated from expenditures on education.

For calibration, we use data on the stocks of human and produced capital along with the stock of

natural resources excluding land. The latter was chosen as these types of resources correspond with

14The labor shares reported in Table 1 are low compared with e.g. the traditional 2
3 that is frequently used. See e.g. the

discussion in Karabarbounis and Neiman (2014) on the recently decreasing development of the labor income share.
15Data are available from the World Bank at https://data.worldbank.org/indicator/NY.GDP.PCAP.P

P.CD (US $) and https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD (PPP). For 2014, this
implies an exchange rate of 2.41656 int. $ at PPP per US $.

https://data.worldbank.org/indicator/NY.GDP.TOTL.RT.ZS
https://data.worldbank.org/indicator/NY.GDP.TOTL.RT.ZS
https://www.rug.nl/ggdc/productivity/pwt/
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD
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the resources included in the World Bank data on resource rents’ share in GDP. Ideally, we would like

to exclude forest-related resources as well as they are renewable. Unfortunately, resource rents are

not published separately for this type of resource.

The data published in World Bank (2018) on produced capital originate largely from the Penn

World Tables (PWT). Produced capital is estimated thereby employing the perpetual inventory method

applying country and capital good specific rates of depreciation. These rates vary between 3 and 8%

per annum. We calibrate our model using δ = 0.05 as an intermediate value in accordance with the

PWT.16

From here on, s̃ denotes the calibrated counterpart (measured in int. $ at PPP) of the model‘s

real variable s. For the initial resource stock S̃0 the number on natural capital (excl. land) in Table 2

has been used. The model doesn’t differentiate between physical and human capital, i.e. the only

other input factor besides the resource is the stock of reproducible man-made capital with initial value

K̃0. As pointed out in the beginning, this stock might very well be interpreted to contain human capital

as well as physical or other produced capital.

In order to calibrate the initial value for K̃0, we explicitly take account of both produced and human

capital in Table 2. Define

K̃0 = K̃α1
p,0K̃1−α1

h,0 , (41)

with 0 ≤ α1 ≤ 1 and denote by K̃p,0 (K̃h,0) produced (human) capital in the sense of Table

2. K̃p,0 is produced capital plus net foreign assets as we are interested in the implications of the

countries own resources. We set (1 − α1)α = αL where αL is the labor income share in GDP in

the sense of Table 1. The capital income share in GDP, αK is given by the residual 1−αL −αR with

αR the resource rents’ share in GDP in the sense of Table 1. Hence, for calibrating α1, we can use

α1 = 1− αL
α . Proceeding this way, we find the values for the output elasticities given in Table 3.

1−α α α1 = 1− αL
α 1−α1

low-income 0.1315 0.8685 0.4128 0.5872
lower-middle-income 0.0592 0.9408 0.4579 0.5421
upper-middle-income 0.0629 0.9371 0.4558 0.5442
high-income 0.0190 0.9810 0.4801 0.5199

Table 3: Calibration values output elasticities

By using these output elasticities we arrive at the initial values for the reproducible capital stock

K̃0 of 8,131 int. $ at PPP.

Before calculating the calibrated adjustment path implied by the model’s dynamics, we have to

make an assumption about the calibrated scenario. We chose to calibrate the model to reflect the

16PWT country specific depreciation rates are available at http://febpwt.webhosting.rug.nl/Home; variable
code for depreciation rates: delta.

http://febpwt.webhosting.rug.nl/Home
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situation prevailing during 2014. We, therefore, chose Ỹ0 to reflect 2014 gross national income (GNI)

in int. $ at PPP. GNI instead of GDP was chosen as the model considers a closed economy and

we would like to match final output predicted by the model with what the real-world economy is able

to produce using its own resources.17 Consequently, we took account of net foreign assets in the

stock of produced capital and focused on the countries’ own produced capital stock. GNI per capita

at current prices stood at 1,027 US $ and, therefore, at 2,483 int. $ at PPP.18

The only parameter left to be calibrated is the rate of technical change γ. We consider the cases

γ ∈ {0.01,0.02, 0.03,0.04}. As we assume ρ = 0.03, the first three scenarios create a long-run

growth rate of 0 for the economy, while the last scenario implies positive long-run growth. γ at 0.01

or 0.02 will be referred to as subsistence scenarios as consumption approaches C in the long run.

Table 4 summarizes the calibrated scenario and the values for the model’s variables.

var. value param. value param. value
K̃0 8,131 α 0.8685 δ 0.05

Ỹ0 2,483 ρ 0.03 γ ∈
§

0.01, 0.02,
0.03,0.04

ª

S̃0 2,986 η 2

Table 4: Calibration values
Note: Calibration values as explained in the main text. Values for γ < ρ reflect the subsistence scenarios. γ > ρ is the growth scenario
with positive long-run growth. All values corresponding to nominal variables are measured in int. $ at PPP in 2014.

5.2 Calibration Results

Given the values discussed in the previous section, we are ready to solve the model and trace out

its dynamics. We start with the scenario γ = 0.01 which we might term the lowest growth scenario.

First, we need to find ζ0. This is straightforward as (13) and (33) imply Y0 =
K0

(1−ζ0)ϕ2
and therefore

ζ0 = 1− γ+δα
K0
Y0

. Given ζ0, we use (25) and (26) to solve for µ0
A0

and (12) at t = 0 for λ0. Finally, µ0

is identified by searching for the value for A0 that implies S̃0 being equal to the value in Table 4.

For larger values of γ, we could repeat the above steps. This would imply a different starting

level of technology A0 for each case considered. We believe that this would make scenarios less

comparable. Therefore, we chose to fix Ã0 at the level implied by γ = 0.01 and instead look for

the starting value S0 that would be required to match initial production with higher rates of technical

change. Of course, these values are smaller than the number in Table 4. This exercise clearly

demonstrates how technical change and initial resource stocks can be substituted against each other.

17See Asheim and Buchholz (2004) for a discussion of Net National Income in welfare measurement and its relation to
Hartwick’s investment rule and the DHSS model. As we consider the DHH model taking account of capital depreciation,
we consider GNI.

18GNI is taken from the World Bank available at https://data.worldbank.org/indicator/NY.GNP.ATLS
.CD, low-income countries’ population is taken from World Bank (2018, p. 233).

https://data.worldbank.org/indicator/NY.GNP.ATLS.CD
https://data.worldbank.org/indicator/NY.GNP.ATLS.CD
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Each of the scenarios needs to be viable, i.e. ζ < ζ̄ has to hold. We, therefore, compute ζ and ζ̄

for all cases and find that a solution exists. Given calibration values for the model’s parameters and

initial endowments, we can also compute C̃max
as the nominal counterpart of Cmax , i.e. the constant

level of consumption maximizing welfare using the maximin criterion. Table 5 gives a summary of the

computational calibration results.

γ= 0.01 γ= 0.02 γ= 0.03 γ= 0.04
ζ0 0.7715 0.7335 0.6954 0.6573
ζ 0.5589 0.4732 0.3848 0.2935

ζ̄ 0.8260 0.7980 0.7703 0.7427
S̃0 2,986 2,904 2,837 2,778
C̃max

0 1,750 1,771 1,790 1,809
Ã0 0.005243

Table 5: Calibration results

Figure 1 traces out the dynamics of consumption, output, the reproducible capital stock and gen-

uine savings. We find that the endowment with natural and produced capital together with the implied

level of technology allows consumption to go quite beyond the subsistence level during adjustment.

In the subsistence scenarios (γ = 0.01 and 0.02), annual consumption peaks at 8,271 and

11,994 2014 int. $ at PPP respectively. Output realizes its peak at 19,509 and 26,978 2014 int. $

at PPP. In these cases, we see consumption decline after the peak and, therefore, a sustainable

development defined by non-declining consumption is not given. Non-declining consumption would,

however, be possible at a constant C̃max
0 right from the beginning which would equal in these cases

1,750 and 1,771 int. $ at PPP. Initial welfare-maximizing consumption is here equal to 1,351 and

1,360 int. $ at PPP.

For the scenarios γ = 0.03 and 0.04, both, consumption and output grow monotonically. In the

first case, consumption and output converge to 25,768 and 55,714 2014 int. $ at PPP. In the latter

case, both quantities grow without bounds. The stock of reproducible capital shares qualitatively the

pattern of consumption and output in its development. Also the values for C̃max
0 in these cases are

reported in Table 5 although they are less interesting here.

Finally, we see that genuine savings are negative throughout. After correcting for the part in

production due to resource depletion, investments into reproducible capital do not cover depreciation.

This is only affordable in the long run because technical change is substituting for these missing

investments. For the cases γ ≤ ρ, we find genuine savings to converge to a negative constant. For

γ > ρ, genuine savings are negative as well but grow without bound.

Figure 1 traces out the growth rates of consumption and output. For γ < ρ we find the growth

rate to follow non-monotonic paths. Initially, higher rates of technical change result in higher growth

rates in consumption and output. However, this behavior changes later on as a higher γ translates

into a higher stock of reproducible capital driving down the rate of return which is in turn decreasing
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consumption output

reproducible capital genuine savings

Note: Calibrated dynamics for C̃t , Ỹt , K̃t and genuine savings (1−α)Ỹt − C̃t −δK̃t for different rates of technical change γ; all quantities
in 2014 int. $ at PPP.

Figure 1: Dynamics level variables

growth.

consumption output

Note: Growth rates of consumption C̃t and final output Ỹt across the calibrated scenarios.

Figure 2: Growth dynamics

The stock of natural capital and resource depletion behaves monotonically as can be seen from

Figure 3. Due to the chosen calibration of the four scenarios, the initial stock of natural capital is

highest and identical to World Bank estimates for γ = 0.01 only. As γ increases, the initial stock S̃0

declines as less resources are needed to match initial output Ỹ0 given the initial stock of reproducible

capital K̃0. Resource depletion declines monotonically as expected.

Finally, we turn to Weitzman’s (1976, 1997) sustainability test by following actual consumption
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natural capital stock resource depletion

Note: Stock of natural resources S̃t and resource depletion R̃t in 2014 int. $ at PPP.

Figure 3: Resource dynamics

in excess of its subsistence level and the sustainability benchmark in (36) as well for the always

attainable benchmark in (39). Only as long as Ct − C ≤ C̄t − C is fulfilled, i.e. actual excess

consumption is below the benchmark, we find sustainability as defined by Weitzman. The alternative

test uses Ct − C ≤ Cmax
t − C .

Figure 4 plots the sustainability indicator (Ct−C)−(C̄t−C) (left panel) and (Ct−C)−(Cmax
t −C)

(right panel). Consequently, negative values correspond to sustainability. We find the cases γ≥ ρ to

be characterized by a totally sustainable development as actual consumption always falls short of its

annuity equivalent and the maximum constant consumption level. We find a sustainable development

although Weitzman’s present value annuity is not attainable in the limit for the case γ > ρ. In the

cases γ < ρ, development is only partially sustainable according to Weitzman’s criterion using both

sustainability benchmarks. During adjustment, we have initially a high rate of interest as the stock of

reproducible capital is low in the beginning. This is reducing initial actual consumption and lets it rise

subsequently. At the same time, the high initial interest rate decreases the PV annuity equivalent

and also Cmax
t . In the beginning, the first effect dominates the latter and development starts in a

sustainable way. However, the order of effects is turned upside down as the economy is approaching

the periods characterized by falling consumption and a lower rate of interest. This is not happening

in the cases where γ ≥ ρ as γ is the limiting value for the interest rate as t →∞ and prevents rt

from falling too deep. This prevents the turnaround in the order of effects. The cases with γ < ρ

nevertheless tend to produce sustainable levels of consumption asymptotically. This reflects that

consumption asymptotically becomes constant as discussed in Section 4.5.

Weitzman’s test gives qualitatively the same results for both sustainability benchmarks. With the

chosen parameterization, Weitzman’s original specification points towards unsustainability earlier

compared with the alternative using Cmax
t as the benchmark. This corresponds to time horizons

where the present value annuity actually is below the maximum possible constant consumption level.

These results stand to some extent in contrast with other sustainability indicators. Looking at the

development of consumption, the difference is not as significant. In the cases γ < ρ consumption
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is starting to fall a bit later compared with the point in time from which on Weitzman’s test indicates

unsustainability. For the cases γ≥ ρ both indicators produce the same conclusion.

Genuine savings indicate unsustainability for the cases γ > ρ and only asymptotically sustain-

ability in the cases γ ≤ ρ. This contrasts sharply with the outcome of Weitzman’s test. This occurs

as genuine savings don’t take account of the exogenous technical change which is substituting for

the accumulation of net wealth.

Note: Weitzman’s (1997) sustainability indicator (Ct −C)− (C̄t −C) (left panel) and (Ct −C)− (Cmax
t −C) (right panel). Negative values

correspond to sustainability at the particular point in time; all quantities in 2014 int. $ at PPP.

Figure 4: Consumption and sustainability

6 Discussion and Conclusion

It is interesting to discuss why the somewhat complex set-up of this version on the DHSS/DHH model

allows for a closed-form solution in terms of a special function. The key insight that can be gained

from the results is that the assumption of constant returns to reproducible and natural capital leads

to a particular production structure.

The reduced form for output in (34) is basically of the AK-type, i.e. Yt =
Kt
ϕ2
(1−ζ0 x t)−1. Capital

productivity is, of course, not constant but is given by a bounded function of time via x t = e−ψt that

is traceable. This implies also a quite simple closed form for the rate of interest.

The issue of subsistence consumption is naturally tied to considerations involving Hartwick’s

(1977) investment rule. In the present model, this could be addressed by setting depreciation and

technical change equal to zero, i.e. δ = γ= 0. The present model incorporates this special case al-

though the formal representation changes drastically. This can be seen by looking at the development

of λt in (13) which is repeated for convenience

λt = eδt
�

λ
α−1
α

0 + (1−α)
1−α
α µ

α−1
α

0
α

γ+δ

�

e
1−α
α (γ+δ)t − 1
�

�
α
α−1

.

The term affected by δ = γ= 0 is
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α

γ+δ

�

e
1−α
α (γ+δ)t − 1
�

= (1−α)
e

1−α
α (γ+δ)t − 1

1−α
α (γ+δ)

,

where e
1−α
α (γ+δ)t−1

1−α
α (γ+δ)t

is the Manly (1976) exponential transformation of t . For δ+γ→ 0, e
1−α
α (γ+δ)t−1
1−α
α (γ+δ)

→
t . This changes the formal representation of the model dramatically but allows for a closed-form so-

lution of the dynamics. This case is treated in Antony and Klarl (2018) where it is shown that the

economy asymptotically fulfills Hartwick’s investment rule.

In this paper, we can provide a closed-form approach to a well-known model in resource eco-

nomics. The approach uses special functions as a series of more recent contributions applies to

solve dynamic problems. The advantage over the usual linearization around the steady state is that

we can pin down the initial conditions for the optimal path.

The availability of the initial conditions for the co-state variables and their relation to initial en-

dowments allows us to calibrate the model on a scenario reflecting recent estimates for endowments

with produced and natural capital by the World Bank. Given these numbers, we find that low-income

but resource-rich countries on average can solve the dynamic problem implied by the poverty line

reflecting subsistence consumption needs.

The closed-form for the adjustment trajectory allows us to apply Weitzman’s (1976,1997) ap-

proach to sustainability. The conclusion from our calibration exercise for resource-rich low-income

countries is that technical change needs to be high enough to allow for an optimal and sustainable

choice for consumption along with the full adjustment towards the steady state. The application of

different sustainability indicators leads to different results in particular during adjustment periods.
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Appendix

A: Derivation of λt : From (8) we know that

Kt

AtRt
=
�

λt(1−α)
µt

�− 1
α

A
− 1
α

t .

Inserting this into (7) together with µt = µ0 and introducing mt = λ
α−1
α

t gives

ṁt = (1−α)
1
αµ

α−1
α

0 e
1−α
α γt −

1−α
α
δmt .

The solution to this differential equation can be found quite straightforward as

mt = m0e−
1−α
α δt +

∫ t

0
(1−α)

1
αµ

α−1
α

0 e
1−α
α γze−
∫ t

z
1−α
α δdsdz

= e−
1−α
α δt
�

m0 + (1−α)
1
αµ

α−1
α

0

∫ t

0
e

1−α
α (γ+δ)zdz

�

= e−
1−α
α δt
�

m0 + (1−α)
1
αµ

α−1
α

0
α

1−α
1

γ+δ

�

e
1−α
α (γ+δ)t − 1
�

�

.

This delivers

λt = eδt
�

λ
α−1
α

0 + (1−α)
1−α
α µ

α−1
α

0
α

γ+δ

�

e
1−α
α (γ+δ)t − 1
�

�
α
α−1

.

It follows that

λt(1−α)
µ0

At =

�

�

λ0(1−α)
µ0

�

α−1
α

e−
1−α
α (γ+δ)t +

α

γ+δ

�

1− e−
1−α
α (γ+δ)t
�

�

α
α−1

= ϕ
α
α−1
2

�

1−
ϕ2 −ϕ1

ϕ2
e−ψt
�

α
α−1

, (42)

with

ϕ1 =
�

λ0(1−α)
µ0

�

α−1
α

, ϕ2 =
α

γ+δ
, ψ=

1−α
α
(γ+δ)

B: The capital stock Kt :

To arrive at the solution for Kt , we need first to find −
∫ t

z f (s)ds with f (s) = −
�

Ks
AsRs

�α−1
+δ.

−
∫ t

z
f (s)ds =

∫ t

z

�

Ks

AsRs

�α−1
−δds =

∫ t

z

�

λs(1−α)
µ0

As

�

1−α
α

−δds.

Using (42) gives
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−
∫ t

z
f (s)ds =

∫ t

z

�

λs(1−α)
µ0

As

�

1−α
α

−δds

= −δ(t − z) +

∫ t

z

�

ϕ1e−ψs +ϕ2
�

1− e−ψs
��−1

ds

= −δ(t − z) +
1

1−α
ln

�

ϕ1 +ϕ2
�

eψt − 1
�

ϕ1 +ϕ2
�

eψz − 1
�

�

.

Kt is consequently given by
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Kt = K0e−
∫ t

0 f (s)ds −
∫ t

0
(Cz − C)e−
∫ t

z f (s)dsdz −
∫ t

0
Ce−
∫ t

z f (s)dsdz

= K0e−δt
�

ϕ1 +ϕ2(eψt − 1)
ϕ1

�
1

1−α

−
∫ t

0
λ
− 1
η

z e−
ρ
η ze−δ(t−z)
�

ϕ1 +ϕ2(eψt − 1)
ϕ1 +ϕ2(eψz − 1)

�
1

1−α

dz

−
∫ t

0
Ce−δ(t−z)
�

ϕ1 +ϕ2(eψt − 1)
ϕ1 +ϕ2(eψz − 1)

�
1

1−α

dz

= K0e−δt
�

ϕ2

ϕ1

�
1

1−α
e
ψ

1−α t
�

1−
ϕ2 −ϕ1

ϕ2
e−ψt
�

1
1−α

−e−δtϕ
1

1−α
2 e

ψ
1−α t
�

1−
ϕ2 −ϕ1

ϕ2
e−ψt
�

1
1−α
∫ t

0
ϕ
− 1

1−α
2 λ

− 1
η

z e(−
ρ
η+δ−

ψ
1−α )z
�

1−
ϕ2 −ϕ1

ϕ2
e−ψz
�− 1

1−α
dz

−Cϕ
1

1−α
2 e−δt e

ψ
1−α t
�

1−
ϕ2 −ϕ1

ϕ2
e−ψt
�

1
1−α
∫ t

0
ϕ
− 1

1−α
2 e
�

δ− ψ
1−α

�

z
�

1−
ϕ2 −ϕ1

ϕ2
e−ψz
�− 1

1−α
dz

= K0e−δt
�

ϕ2

ϕ1

�
1

1−α
e
ψ

1−α t
�

1−
ϕ2 −ϕ1

ϕ2
e−ψt
�

1
1−α

−e−δt e
ψ

1−α t
�

1−
ϕ2 −ϕ1

ϕ2
e−ψt
�

1
1−α
∫ t

0





µ0

(1−α)A0
ϕ

α
α−1
2 e(δ−

α
1−αψ)z
�

1−
ϕ2 −ϕ1

ϕ2

−ψz
�

α
α−1





− 1
η

e(−
ρ
η+δ−

ψ
1−α )z

×
�

1−
ϕ2 −ϕ1

ϕ2
e−ψz
�− 1

1−α
dz

−Ce−δt e
ψ

1−α t
�

1−
ϕ2 −ϕ1

ϕ2
e−ψt
�

1
1−α
∫ t

0
e
�

δ− ψ
1−α

�

z
�

1−
ϕ2 −ϕ1

ϕ2
e−ψz
�− 1

1−α
dz

= K0e−δt
�

ϕ2

ϕ1

�
1

1−α
e
ψ

1−α t
�

1−
ϕ2 −ϕ1

ϕ2
e−ψt
�

1
1−α

−e−δtϕ
α

(1−α)η
2

�

µ0

(1−α)A0

�− 1
η

e
ψ

1−α t
�

1−
ϕ2 −ϕ1

ϕ2
e−ψt
�

1
1−α
∫ t

0
e
�

(η−1)δ−ρ
η + α−η1−α

ψ
η

�

z

×
�

1−
ϕ2 −ϕ1

ϕ2
e−ψz
�− 1

1−α+
α

1−α
1
η

dz

−Ce−δt e
ψ

1−α t
�

1−
ϕ2 −ϕ1

ϕ2
e−ψt
�

1
1−α
∫ t

0
e
�

δ− ψ
1−α

�

z
�

1−
ϕ2 −ϕ1

ϕ2
e−ψz
�− 1

1−α
dz

Introducing x t = e−ψt , ζ= ϕ2−ϕ1
ϕ2

and noting that λ
− 1
η

0 = C0 − C (condition 6) gives after simplification
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Kt = K0e−δt (1− ζ)−
1

1−α x
− 1

1−α
t (1− ζx t)

1
1−α (43)

−(C0 − C)e−δt(1− ζ)−
α

(1−α)η x
− 1

1−α
t (1− ζx t)

1
1−α

∫ t

0
x
− 1
ψ

�

(η−1)δ−ρ
η + α−η1−α

ψ
η

�

z (1− ζxz)
α−η
η(1−α) dz

−Ce−δt x
− 1

1−α
t (1− ζx t)

1
1−α

∫ t

0
x
− 1
ψ

�

δ− ψ
1−α

�

z (1− ζxz)
− 1

1−α dz

Using the variable xz , we note that −d xz = ψe−ψzdz = ψxzdz and consequently, dz = − 1
ψ x−1

z d xz .

The region of integration changes from [0, t] to [x t , 1] with x t ≤ 1 if we integrate over −xz instead of z.

Obviously, xz = 1 for z = 0 and limz→∞ xz = 0.

Kt = K0e−δt (1− ζ)−
1

1−α x
− 1

1−α
t (1− ζx t)

1
1−α (44)

−
C0 − C

ψ
e−δt(1− ζ)−

α
(1−α)η x

− 1
1−α

t (1− ζx t)
1

1−α

∫ 1

x t

x
− 1
ψ

�

(η−1)δ−ρ
η + α−η1−α

ψ
η

�

−1
z (1− ζxz)

α−η
η(1−α) d xz

−
C

ψ
e−δt x

− 1
1−α

t (1− ζx t)
1

1−α

∫ 1

x t

x
− 1
ψ

�

δ− ψ
1−α

�

−1
z (1− ζxz)

− 1
1−α d xz .

Next, we turn to the integrals in (44)

∫ 1

x t

x
− 1
ψ

�

(η−1)δ−ρ
η + α−η1−α

ψ
η

�

−1
z (1− ζxz)

α−η
η(1−α) d xz =

=

∫ 1

0
x
− 1
ψ

�

(η−1)δ−ρ
η + α−η1−α

ψ
η

�

−1
z (1− ζxz)

α−η
η(1−α) d xz −
∫ x t

0
x
− 1
ψ

�

(η−1)δ−ρ
η + α−η1−α

ψ
η

�

−1
z (1− ζxz)

α−η
η(1−α) d xz

=

∫ 1

0
x b̃1−1

z (1− ζxz)
−ã1 d xz −
∫ x t

0
x b̃1−1

z (1− ζxz)
−ã1 d xz (45)

with

ã1 =
η−α
η(1−α)

b̃1 = −
1
ψ

�

(η− 1)δ−ρ
η

+
α−η
1−α

ψ

η

�

= 1+
α[(η− 1)γ+ρ]
(1−α)(δ+ γ)η

.

The integral representation of the Gaussian hypergeometric function is given by

2F1(a, b; c; z) =
Γ (c)

Γ (b)Γ (c − b)

∫ 1

0
t b−1(1− t)c−b−1(1− zt)−ad t,

for ℜ(c) > ℜ(b) > 0 where ℜ(·) denotes the real part of the argument and Γ (·) the Gamma function

(see Abramowitz and Stegun, 1972, 15.3.1) where the discussion in the main text applies. The first integral in

(45) therefore equals in this case
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∫ 1

0
x b̃1−1

z (1− ζxz)
−ã1 d xz =

Γ (b̃1)Γ (1)

Γ (b̃1 + 1)
2F1(ã1, b̃1; b̃1 + 1;ζ)

=
Γ (b̃1)Γ (1)

b̃1Γ (b̃1)
2F1(ã1, b̃1; b̃1 + 1;ζ)

=
1

b̃1
2F1(ã1, b̃1; b̃1 + 1;ζ).

The second integral in (45) can also be expressed in terms of the Gaussian hypergeometric function. We

define x̃z =
xz
x t

which implies d xz = x t d x̃z and rewrite the integral as

∫ x t

0
(x t x̃z)

b̃1−1(1− ζx t x̃z)
−ã1 d xz =

∫ 1

0
(x t x̃z)

b̃1−1(1− ζx t x̃z)
−ã1 x t d x̃z

= x b̃1
t

∫ 1

0
x̃ b̃1−1

z (1− ζx t x̃z)
−ã1 d x̃z

= x b̃1
t

1

b̃1
2F1(ã1, b̃1; b̃1 + 1;ζx t).

The second integral in (44) can also be formulated using the Gaussian hypergeometric function

∫ 1

x t

x
− 1
ψ

�

δ− ψ
1−α

�

−1
z (1− ζxz)

− 1
1−α d xz = (46)

=

∫ 1

0
x
− 1
ψ

�

δ− ψ
1−α

�

−1
z (1− ζxz)

− 1
1−α d xz −
∫ x t

0
x
− 1
ψ

�

δ− ψ
1−α

�

−1
z (1− ζxz)

− 1
1−α d xz

=
1

b̃2

h

2F1(ã2, b̃2; b̃2 + 1;ζ)− x b̃2
t 2F1(ã2, b̃2; b̃2 + 1;ζx t)

i

,

with

ã2 =
1

1−α
,

b̃2 = −
1
ψ

�

δ−
ψ

1−α

�

=
(1−α)δ+ γ
(1−α)(γ+δ)

> 0,

where it is again required that b̃2 > 0 which is here fulfilled in any case.

Using these results, the stock of capital Kt develops according to

Kt = K0e−δt (1− ζ)−ã2 x−ã2
t (1− ζx t)

ã2 (47)

−
C0 − C

ψ
e−δt(1− ζ)ã1−ã2 x−ã2

t (1− ζx t)
ã2

1

b̃1

h

2F1(ã1, b̃1; b̃1 + 1;ζ)− x b̃1
t 2F1(ã1, b̃1; b̃1 + 1;ζx t)

i

−
C

ψ
e−δt x−ã2

t (1− ζx t)
ã2

1

b̃2

h

2F1(ã2, b̃2; b̃2 + 1;ζ)− x b̃2
t 2F1(ã2, b̃2; b̃2 + 1;ζx t)

i

C: Resource use Rt : Using (8), (42), (43) and (47) gives
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Rt = A−1
t

�

λt(1−α)
µ0

At

�

1
α

Kt

= ϕ
−ã2
2 (1− ζx t)

−ã2A−1
0 e−γt Kt

=
K0

A0
ϕ
− 1

1−α
2 (1− ζ)−ã2 x−1

t

−
C0 − C

ψ
ϕ
−ã2
2 (1− ζ)ã1−ã2 x−1

t
1

b̃1

1
A0

h

2F1(ã1, b̃1; b̃1 + 1;ζ)− x b̃1
t 2F1(ã1, b̃1; b̃1 + 1;ζx t)

i

−
C

ψ
ϕ
−ã2
2 x−1

t
1
A0

1

b̃2

h

2F1(ã2, b̃2; b̃2 + 1;ζ)− x b̃2
t 2F1(ã2, b̃2; b̃2 + 1;ζx t)

i

D: Resource stock St : The solution to (4) is given by

St = S0 −
∫ t

0
Rzdz +

∫ t

0
vdz,

with

∫ t

0
Rzdz =

∫ t

0

K0

A0
ϕ
−ã2
2 (1− ζ)−ã2 x−1

z dz

−
C0 − C

ψ
ϕ
−ã2
2 (1− ζ)ã1−ã2

1

b̃1

1
A0

∫ t

0
x−1

z

h

2F1(ã1, b̃1; b̃1 + 1;ζ)− x b̃1
z 2F1(ã1, b̃1; b̃1 + 1;ζxz)

i

dz

−
C

ψ
ϕ
−ã2
2

1
A0

1

b̃2

∫ t

0
x−1

z

h

2F1(ã2, b̃2; b̃2 + 1;ζ)− x b̃2
z 2F1(ã2, b̃2; b̃2 + 1;ζxz)

i

dz

Using −dζxz = ζψxzdz and obeying that we have to integrate from ζx t to ζ gives
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∫ t

0
Rzdz =

K0

A0
ϕ
−ã2
2 (1− ζ)−ã2

ζ

ψ

∫ ζ

ζx t

(ζxz)
−2dζxz

−
C0 − C

ψ2
ϕ
−ã2
2 (1− ζ)ã1−ã2

ζ

b̃1

1
A0

∫ ζ

ζx t

(ζxz)
−2
h

2F1(ã1, b̃1; b̃1 + 1;ζ)− x b̃1
z 2F1(ã1, b̃1; b̃1 + 1;ζxz)

i

dζxz

−
C

ψ2
ϕ
−ã2
2

ζ

b̃2

1
A0

∫ ζ

ζx t

(ζxz)
−2
h

2F1(ã2, b̃2; b̃2 + 1;ζ)− x b̃2
z 2F1(ã2, b̃2; b̃2 + 1;ζxz)

i

dζxz

= −
K0

A0
ϕ
−ã2
2 (1− ζ)−ã2

1
ψ

�

1− x−1
t

�

+
C0 − C

ψ2
ϕ
−ã2
2 (1− ζ)ã1−ã2

1
A0

1

b̃1
2F1(ã1, b̃1; b̃1 + 1;ζ)

�

1− x−1
t

�

+
C0 − C

ψ2
ϕ
−ã2
2 (1− ζ)ã1−ã2

1
A0

ζ1−b̃1

b̃1

∫ ζ

ζx t

(ζxz)
b̃1−2

2F1(ã1, b̃1; b̃1 + 1;ζxz)dζxz

+
C

ψ2
ϕ
−ã2
2

1
A0

1

b̃2
2F1(ã2, b̃2; b̃2 + 1;ζ)

�

1− x−1
t

�

+
C

ψ2
ϕ
−ã2
2

1
A0

ζ1−b̃2

b̃2

∫ ζ

ζx t

(ζxz)
b̃2−2

2F1(ã2, b̃2; b̃2 + 1;ζxz)dζxz .

Using

∫

zb−2
2F1(a, b; c; z)dz =

zb−1

b− 1 2F1(a, b− 1; c; z) + constant

gives

∫ t

0
Rzdz = −

K0

A0
ϕ
−ã2
2 (1− ζ)−ã2

1
ψ

�

1− x−1
t

�

(48)

+
C0 − C

ψ2
ϕ
−ã2
2 (1− ζ)ã1−ã2

1
A0

1

b̃1
2F1(ã1, b̃1; b̃1 + 1;ζ)

�

1− x−1
t

�

+
C0 − C

ψ2
ϕ
−ã2
2 (1− ζ)ã1−ã2

1
A0

ζ1− b̃1

b̃1(b̃1 − 1)

�

ζ b̃1−1
2F1(ã1, b̃1 − 1; b̃1 + 1;ζ)− (ζx t)

b̃1−1
2F1(ã1, b̃1 − 1; b̃1 + 1;ζx t)

�

+
C

ψ2
ϕ
−ã2
2

1
A0

1

b̃2
2F1(ã2, b̃2; b̃2 + 1;ζ)

�

1− x−1
t

�

+
C

ψ2
ϕ
−ã2
2

1
A0

ζ1−b̃2

b̃2(b̃2 − 1)

�

ζ b̃2−1
2F1(ã2, b̃2 − 1; b̃2 + 1;ζ)− (ζx t)

b̃2−1
2F1(ã2, b̃2 − 1; b̃2 + 1;ζx t)

�

.

This gives St as

St = S0 −
∫ t

0
Rzdz + vt,

where
∫ t

0 Rzdz is given by (48) and the above parameter restrictions need to be fulfilled.
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E: Transversality condition for Kt :
lim

t→∞
λt Kt = 0 (49)

With (42) we find

λt Kt = e−γt µ0

(1−α)A0
ϕ

α
α−1
2

�

1−
ϕ2 −ϕ1

ϕ2
e−ψt
�

α
α−1

Kt = e−γt µ0

(1−α)A0
ϕ

α
α−1
2 (1− ζx t)

− α
1−α Kt

= K0e−(γ+δ)tϕ2ϕ
− 1

1−α
1

µ0

(1−α)A0
x
− 1

1−α
t (1− ζx t)

−e−(γ+δ)tϕ
α(1−η)
(1−α)η
2

�

µ0

(1−α)A0

�1− 1
η 1
ψ

x
− 1

1−α
t (1− ζx t)

1

b̃1

h

2F1(ã1, b̃1; b̃1 + 1;ζ)− x b̃1
t 2F1(ã1, b̃1; b̃1 + 1;ζx t)

i

−Ce−(γ+δ)tϕ
α
α−1
2

µ0

(1−α)A0

1
ψ

x
− 1

1−α
t (1− ζx t)

1

b̃2

h

2F1(ã2, b̃2; b̃2 + 1;ζ)− x b̃2
t 2F1(ã2, b̃2; b̃2 + 1;ζx t)

i

= K0ϕ2ϕ
− 1

1−α
1

µ0

(1−α)A0
x−1

t (1− ζx t)

−ϕ
α(1−η)
(1−α)η
2

�

µ0

(1−α)A0

�1− 1
η 1
ψ

x−1
t (1− ζx t)

1

b̃1

h

2F1(ã1, b̃1; b̃1 + 1;ζ)− x b̃1
t 2F1(ã1, b̃1; b̃1 + 1;ζx t)

i

−Cϕ
α
α−1
2

µ0

(1−α)A0

1
ψ

x−1
t (1− ζx t)

1

b̃2

h

2F1(ã2, b̃2; b̃2 + 1;ζ)− x b̃2
t 2F1(ã2, b̃2; b̃2 + 1;ζx t)

i

As t →∞ we see x t → 0. and x−1
t →∞. Rewriting λt Kt as x tλt Kt

x t
and applying L’Hospital’s rule as

x t → 0 requires limx t→0
∂ x tλt Kt
∂ x t

= 0. ∂ x tλt Kt
∂ x t

computed using (50) is given by

∂ x tλt Kt

∂ x t
= −K0ϕ2ϕ

− 1
1−α

1
µ0

(1−α)A0
ζ

+ϕ
α(1−η)
(1−α)η
2

�

µ0

(1−α)A0

�1− 1
η 1
ψ

1

b̃1
ζ
h

2F1(ã1, b̃1; b̃1 + 1;ζ)− x b̃1
t 2F1(ã1, b̃1; b̃1 + 1;ζx t)

i

−ϕ
α(1−η)
(1−α)η
2

�

µ0

(1−α)A0

�1− 1
η 1
ψ
(1− ζx t)

1

b̃1

h

−b̃1 x b̃1−1
t 2F1(ã1, b̃1; b̃1 + 1;ζx t)

i

−ϕ
α(1−η)
(1−α)η
2

�

µ0

(1−α)A0

�1− 1
η 1
ψ
(1− ζx t)

1

b̃1

�

−x b̃1
t
∂ 2F1(ã1, b̃1; b̃1 + 1;ζx t)

∂ x t

�

+Cϕ
α
α−1
2

µ0

(1−α)A0

1
ψ

1

b̃2
2F1(ã2, b̃2; b̃2 + 1;ζ)ζ

−Cϕ
α
α−1
2

µ0

(1−α)A0

1
ψ

1

b̃2
(1− ζx t)
h

−b̃2 x b̃2−1
t 2F1(ã2, b̃2; b̃2 + 1;ζx t)

i

−Cϕ
α
α−1
2

µ0

(1−α)A0

1
ψ

1

b̃2
(1− ζx t)

�

−x b̃2
t
∂ 2F1(ã2, b̃2; b̃2 + 1;ζx t)

∂ x t

�

Evaluating ∂ x tλt Kt
∂ x t

at x t = 0 gives as long as b̃1 − 1> 0 and b̃2 − 1> 0



#2302 Bremen Papers on Economics & Innovation

Subsistence Consumption and Natural Resource Depletion:
Can resource-rich low-income countries realize sustainable consumption paths?

42 / 56

∂ x tλt Kt

∂ x t

�

�

�

x t=0
= −K0ϕ2ϕ

− 1
1−α

1
µ0

(1−α)A0
ζ

+ϕ
α(1−η)
(1−α)η
2

�

µ0

(1−α)A0

�1− 1
η 1
ψ

1

b̃1
2F1(ã1, b̃1; b̃1 + 1;ζ)ζ

+Cϕ
α
α−1
2

µ0

(1−α)A0

1
ψ

1

b̃2
2F1(ã2, b̃2; b̃2 + 1;ζ)ζ

Transversality therefore demands

K0 = ϕ
1

1−α
1 ϕ

α(1−η)
(1−α)η−1

2

�

µ0

(1−α)A0

�− 1
η 1
ψ

1

b̃1
2F1(ã1, b̃1; b̃1 + 1;ζ)

+Cϕ
1

1−α
1 ϕ

1
α−1
2

1
ψ

1

b̃2
2F1(ã2, b̃2; b̃2 + 1;ζ)

=
C0 − C

ψ
(1− ζ)ã1−1 1

b̃1
2F1(ã1, b̃1; b̃1 + 1;ζ) (50)

+
C

ψ
(1− ζ)ã1

1

b̃2
2F1(ã2, b̃2; b̃2 + 1;ζ)

If either b̃1 − 1 > 0 or b̃2 − 1 > 0 would not hold, the transversality condition for Kt would be violated

because then limx t→0
∂ x tλt Kt
∂ x t

→∞.

Inserting the transversality condition (50) into (47) and using the definitions for x t , b̃1 and b̃2 gives

Kt =
C0 − C

ψ
e−δt x−ã2

t (1− ζx t)
ã2(1− ζ)ã1−ã2

1

b̃1
x b̃1

t 2F1(ã1, b̃1; b̃1 + 1;ζx t)

+
C

ψ
e−δt x−ã2

t (1− ζx t)
ã2

1

b̃2
x b̃2

t 2F1(ã2, b̃2; b̃2 + 1;ζx t)

=
C0 − C

ψ
x
(ã1−ã2)

γ−ρ
γ+δ

t (1− ζx t)
ã2(1− ζ)ã1−ã2

1

b̃1
2F1(ã1, b̃1; b̃1 + 1;ζx t)

+
C

ψ
(1− ζx t)

ã2
1

b̃2
2F1(ã2, b̃2; b̃2 + 1;ζx t)

As t →∞, x t → 0 and we observe for b̃1 − 1> 0 and b̃2 − 1> 0

lim
x t→0

2F1(ã1, b̃1; b̃1 + 1;ζx t) = b̃1

∫ 1

0
x b̃1−1

z d xz = 1,

lim
x t→0

2F1(ã2, b̃2; b̃2 + 1;ζx t) = b̃2

∫ 1

0
x b̃2−1

z d xz = 1.

Therefore,
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lim
t→∞

Kt =
C0 − C

ψ
(1− ζ)ã1−ã2

1

b̃1
lim

x t→0
x
(ã1−ã2)

γ−ρ
γ+δ

t

+
C

ψ

1

b̃2
,

Depending on the parameter values, we find

lim
t→∞

Kt











= C
ψ

1
b̃2

for ρ > γ,

= C0−C
ψ (1− ζ)ã1−ã2 1

b̃1
+ C
ψ

1
b̃2

for ρ = γ,

→∞ for ρ < γ.

F: Transversality condition for St :

lim
t→∞

µtSt = lim
t→∞

µ0St = µ0 lim
t→∞

St = 0

First, we compute resource extraction over the entire planing horizon. (48) reveals that
∫∞

0 Rzdz only

exists if b̃1 − 1≥ 0 and b̃2 − 1≥ 0 because limt→∞ x t = 0. Rearranging (48) gives

∫ t

0
Rzdz =

�

−
K0

A0
ϕ
−ã2
2 (1− ζ)−ã2

1
ψ
+

C0 − C

ψ2
ϕ
−ã2
2 (1− ζ)ã1−ã2

1

b̃1
2F1(ã1, b̃1; b̃1 + 1;ζ)

+
C

ψ2
ϕ
−ã2
2

1
A0

1

b̃2
2F1(ã2, b̃2; b̃2 + 1;ζ)

�

�

1− x−1
t

�

(51)

+
C0 − C

ψ2
ϕ
−ã2
2 (1− ζ)ã1−ã2

ζ1−b̃1

b̃1(b̃1 − 1)

1
A0

�

ζ b̃1−1
2F1(ã1, b̃1 − 1; b̃1 + 1;ζ)− (ζx t)

b̃1−1
2F1(ã1, b̃1 − 1; b̃1 + 1;ζx t)

�

+
C

ψ2
ϕ
−ã2
2

ζ1−b̃2

b̃2(b̃2 − 1)

1
A0

�

ζ b̃2−1
2F1(ã2, b̃2 − 1; b̃2 + 1;ζ)− (ζx t)

b̃2−1
2F1(ã2, b̃2 − 1; b̃2 + 1;ζx t)

�

,

where we note that the first term in brackets is zero due to the transversality condition (50) for Kt and,

hence, we arrive for t →∞ at

∫ ∞

0
R zdz =

C0 − C

ψ2
ϕ
−ã2
2 (1− ζ)ã1−ã2

1

b̃1(b̃1 − 1)

1
A0

2F1(ã1, b̃1 − 1; b̃1 + 1;ζ) (52)

+
C

ψ2
ϕ
−ã2
2

1

b̃2(b̃2 − 1)

1
A0

2F1(ã2, b̃2 − 1; b̃2 + 1;ζ).

Transversality demands

S0 −
∫ ∞

0
Rzdz = 0, (53)

which implies
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S0 =
C0 − C

ψ2
ϕ
−ã2
2 (1− ζ)ã1−ã2

1

b̃1(b̃1 − 1)

1
A0

2F1(ã1, b̃1 − 1; b̃1 + 1;ζ) (54)

+
C

ψ2
ϕ
−ã2
2

1

b̃2(b̃2 − 1)

1
A0

2F1(ã2, b̃2 − 1; b̃2 + 1;ζ).

Inserting (55) into (51) and using (50) gives

St =
C0 − C

ψ2
ϕ
−ã2
2 (1− ζ)ã1−ã2

x b̃1−1
t

b̃1(b̃1 − 1)

1
A0

2F1(ã1, b̃1 − 1; b̃1 + 1;ζ)

+
C

ψ2
ϕ
−ã2
2

x b̃2−1
t

b̃2(b̃2 − 1)

1
A0

2F1(ã2, b̃2 − 1; b̃2 + 1;ζ).

As long as b̃1 − 1> 0 and b̃2 − 1> 0, obviously limt→∞ St = l imx t→0St = 0.

G: Co-state variables: We prove that the transversality conditions (50) and (52) uniquely pin down the

initial value of ζ if a solution to the problem exists.

Define

K+0 =
C0 − C

ψ
(1− ζ)ã1 2F1(ã1, b̃1; b̃1 + 1;ζ)

b̃1
,

K0 =
C

ψ
(1− ζ)ã2 2F1(ã2, b̃2; b̃2 + 1;ζ)

b̃2
,

S+0 = ϕ
−ã2
2

C0 − C

ψ2
(1− ζ)ã1−ã2

1
A0

2F1(ã1, b̃1 − 1; b̃1 + 1;ζ)

b̃1(b̃1 − 1)
,

S0 = ϕ
−ã2
2

C

ψ2

1
A0

2F1(ã2, b̃2 − 1; b̃2 + 1;ζ)

b̃2(b̃2 − 1)

Equilibrium demands

K0 − K0

S0 − S0
=

K+0
S+0

, (55)

with

K+0
S+0

= ψ(b̃1 − 1)A0ϕ
ã2
2 (1− ζ)

ã2 2F1(ã1, b̃1; b̃1 + 1;ζ)

2F1(ã1, b̃1 − 1; b̃1 + 1;ζ)
, (56)

K0 − K0

S0 − S0
=

K0 −
C
ψ (1− ζ)

ã2 2F1(ã2,b̃2;b̃2+1;ζ)
b̃2

S0 −
C
ψ2ϕ

−ã2
2

1
A0

2F1(ã2,b̃2−1;b̃2+1;ζ)
b̃2(b̃2−1)

.). (57)

We first notice that (56) and (57) demand ζ < 1.
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We show first that
K+0
S+0

given by (56) is decreasing in ζ. Second, we show that
K0−K0
S0−S0

given by (57) is

increasing in ζ. This implies that there can be at most one solution to (55).

Investigating
K+0
S+0

, we have to distinguish three cases, i.e. ã1 < 0, ã1 = 0, ã1 > 0.

Case 1: ã1 < 0: Lemma 1 in Boucekkine and Ruiz-Tamarit (2008) shows that 2F1(ã1,b̃1;b̃1+1;ζ)

2F1(ã1,b̃1−1;b̃1+1;ζ)
is

decreasing in ζ in case ã1 < 0. It is obvious that (1− ζ)ã2 is decreasing in ζ as well because ã2 =
1

1−α > 0.

Therefore,
K+0
S+0

is in this case decreasing in ζ.

Case 2: ã1 = 0: This case prevails if it happens to be that η = α. Lemma 1 in Boucekkine and Ruiz-

Tamarit (2008) shows that in this case
∂ 2F1(ã1,b̃1;b̃1+1;ζ)

2F1(ã1,b̃1−1;b̃1+1;ζ)
∂ ζ = 0 applies. As (1− ζ)ã2 is decreasing in ζ,

K+0
S+0

is

in this case again decreasing in ζ.

Case 3: ã1 > 0: The denominator in
K+0
S+0

is increasing in ζ as ∂ 2F1(ã1,b̃1−1;b̃1+1;ζ)
∂ ζ = ã1(b̃1−1)

b̃1+1 2F1((ã1 +

1, b̃1; b̃1 + 2;ζ) > 0 (Abramowitz and Stegun 1972, 15.2.1) because b̃1 − 1 > 0 is required by the transver-

sality conditions (50) and (55). There are opposing forces at work in the nominator as 2F1(ã1, b̃1; b̃1 + 1;ζ)
increases and (1− ζ)ã2 decreases in ζ. To find out which is stronger, we define h(ζ) as

h(ζ) = (1− ζ)ã2
2F1(ã1, b̃1; b̃1 + 1;ζ) = (1− ζ)ã2−ã1(1− ζ)ã1

2F1(ã1, b̃1; b̃1 + 1;ζ)

with

ã2 − ã1 =
1

1−α
−

η−α
η(1−α)

=
α

η(1−α
> 0,

2F1(ã1, b̃1; b̃1 + 1;ζ) = b̃1

∫ 1

0
x b̃1−1(1− zx)−ã1 d x .

Therefore,

∂ h(ζ)
∂ ζ

= −(ã2 − ã1)
h(ζ)
1− ζ

− ã1
h(ζ)
1− ζ

+ (1− ζ)ã2−ã1(1− ζ)ã1
∂ 2F1(ã1, b̃1; b̃1 + 1;ζ)

∂ z

= −(ã2 − ã1)
h(ζ)
1− ζ

− ã1
h(ζ)
1− ζ

+ (1− ζ)ã2−ã1(1− ζ)ã1 ã1 b̃1

∫ 1

0
x b̃1(1− ζx)−ã1−1d x

= −(ã2 − ã1)
h(ζ)
1− ζ

+ (1− ζ)ã2−ã1(1− ζ)ã1 ã1 b̃1

∫ 1

0

�

x b̃1(1− ζx)−ã1−1 − x b̃1−1 (1− ζx)−ã1

1− ζ

�

d x

= −(ã2 − ã1)
h(ζ)
1− ζ

+ (1− ζ)ã2−ã1(1− ζ)ã1 ã1 b̃1

∫ 1

0

�

x b̃1(1− ζx)−ã1−1 − x b̃1−1 (1− ζx)−ã1

1− ζ

�

d x

= −(ã2 − ã1)
h(ζ)
1− ζ

+ (1− ζ)ã2−ã1(1− ζ)ã1 ã1 b̃1

∫ 1

0

�

x b̃1−1(1− ζx)−ã1−1
�

x −
1− ζx
1− ζ

��

d x

= −(ã2 − ã1)
h(ζ)
1− ζ

+ (1− ζ)ã2−ã1(1− ζ)ã1 ã1 b̃1

∫ 1

0

�

x b̃1−1(1− ζx)−ã1−1 x − 1
1− ζ

�

d x

= −(ã2 − ã1)
h(ζ)
1− ζ

− ã1(1− ζ)ã2−1 b̃1

∫ 1

0
x b̃1−1(1− x)(1− ζx)−ã1−1d x

= −(ã2 − ã1)
h(ζ)
1− ζ

− ã1(1− ζ)ã2−1 2F1(ã1 + 1, b̃1; b̃1 + 2;ζ)

b̃1 + 1
.
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As ã2 − ã1 > 0 and ã1 > 0 in this case, we find ∂ h(ζ)
∂ ζ < 0. Summing up case 3, the denominator in

K+0
S+0

is increasing while the nominator is decreasing in ζ. Hence,
K+0
S+0

is again decreasing in ζ.

We turn to
K0−K0
S0−S0

given by (57). Its denominator is obviously decreasing in ζ as ã2 =
1

1−α > 0 and

∂ 2F1(ã2,b̃2−1;b̃2+1;ζ)
∂ ζ = ã2(b̃2−1)

b̃2+1 2F1(ã2 + 1, b̃2; b̃2 + 2;ζ) with b̃2 − 1 > 0 due to the transversality condition

(55).

The nominator in
K0−K0
S0−S0

is increasing in ζ. To see this, define

k(ζ) = (1− ζ)ã2
2F1(ã2, b̃2; b̃2 + 1;ζ) = (1− ζ)ã2 b̃2

∫ 1

0
x b̃2−1(1− ζx)−ã2 d x .

Therefore,

∂ k(ζ)
∂ ζ

= ã2(1− ζ)ã2 b̃2

�

∫ 1

0
x b̃2(1− ζx)−ã2−1d x −

∫ 1

0
x b̃2−1 (1− ζx)−ã2

1− ζ
d x

�

= ã2(1− ζ)ã2 b̃2

∫ 1

0
x b̃2−1(1− ζx)−ã2−1

�

x −
1− ζx
1− ζ

�

d x

= −ã2(1− ζ)ã2−1 b̃2

∫ 1

0
x b̃2−1(1− x)(1− ζx)−ã2−1d x

= −ã2(1− ζ)ã2−1 2F1(ã2 + 1, b̃2; b̃2 + 2;ζ)

b̃2 + 1

which is negative for ζ < 1.

Summing up, we have shown that the left hand side of (55) is increasing while the right hand side is

decreasing in ζ. If an equilibrium fulfilling (55) exists, it is unique.

Properties of
K+0
S+0

: To work out conditions for existence, we focus first on
K+0
S+0

given by (56). Any solution

ζ needs to fulfill ζ < 1; we know that
K+0
S+0

is decreasing in ζ. We show first that
K+0
S+0

is unbounded from

above for ζ → −∞. Let ϵ1 be an arbitrarily large but finite real number. The critical term in
K+0
S+0

is (1 −

ζ)ã2 2F1(ã1,b̃1;b̃1+1;ζ)

2F1(ã1,b̃1;b̃1+1;ζ)
. Now suppose that

lim
ζ→−∞

(1− ζ)ã2 2F1(ã1, b̃1; b̃1 + 1;ζ)

2F1(ã1, b̃1 − 1; b̃1 + 1;ζ)
< ϵ1 (58)

would be true. As
K+0
S+0

decreases with ζ. This would imply that for any finite ζ < 1 and for ζ → −∞ it

would be true that
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2F1(ã1, b̃1; b̃1 + 1;ζ) < ϵ1(1− ζ)−ã2
2F1(ã1, b̃1; b̃1 + 1;ζ),

b̃1

∫ 1

0
x b̃1−1(1− ζx)−ã1 d x − ϵ1(1− ζ)−ã2 b̃1(b̃1 − 1)

∫ 1

0
x b̃1−2(1− x)(1− ζx)−ã1 d x < 0,

∫ 1

0
x b̃1−2(1− ζx)−ã1

�

x − ϵ1(b̃1 − 1)(1− ζ)−ã2(1− x)
�

d x < 0,

∫ 1

0
x b̃1−2(1− ζx)−ã1 κ(x;ϵ1)d x < 0, (59)

with

κ(x;ϵ1) =
�

x − ϵ1(b̃1 − 1)(1− ζ)−ã2(1− x)
�

,

where κ(x;ϵ1) is an affine function of x . κ(x;ϵ1) is zero for x = x̄0(ϵ1) with

x̄0(ϵ1) =
ϵ1(b̃1 − 1)(1− ζ)−ã2

1+ ϵ1(b̃1 − 1)(1− ζ)−ã2
. (60)

Therefore, κ(x;ϵ1) < 0 for x < x̄0(ϵ1) and κ(x;ϵ1) > 0 for x > x̄0(ϵ1). For any finite ϵ1, x̄0(ϵ1)→ 0

for ζ → −∞ as ã2 =
1

1−α > 0. As we integrate from 0 to 1, κ(x;ϵ1) becomes positive for 0 ≤ x ≤ 1 as

ζ→−∞ and inequality (59) cannot be fulfilled. Hence,
K+0
S+0

cannot be bounded from above as ζ→−∞ and

limζ→−∞
K+0
S+0
=∞.

Next, turn to the case ζ→ 1. Suppose that
K+0
S+0

would be bounded from below by some ϵ2 > 0. By the

same logic as above, this would imply for any ζ < 1 and ζ→ 1 that

2F1(ã1, b̃1; b̃1 + 1;ζ) > ϵ2(1− ζ)−ã2
2F1(ã1, b̃1; b̃1 + 1;ζ),

∫ 1

0
x b̃1−2(1− ζx)−ã1 κ(x;ϵ2)d x > 0. (61)

For any finite ϵ2 > 0, x̄0(ϵ2) → 1 for ζ → 1 as ã2 =
1

1−α > 0. As we integrate from 0 to 1, κ(x;ϵ2)

becomes negative for 0 ≤ x ≤ 1 as ζ → 1 and inequality (61) cannot be fulfilled. Hence,
K+0
S+0

cannot be

bounded from below and limζ→1
K+0
S+0
= 0.

Properties of
K0−K0
S0−S0

as ζ → 1: We turn to
K0−K0
S0−S0

which we know is increasing in ζ for ζ < 1. If a

maximum exists, it must be reached as ζ→ 1. The critical term in the nominator is (1−ζ)ã2 2F1(ã2, b̃2; b̃2 +
1;ζ) which can be written as (1− ζ) 2F1(ã2,b̃2;b̃2+1;ζ)

(1−ζ)1−ã2
. We are interested in

lim
ζ→1
(1− ζ)2F1(ã2, b̃2; b̃2 + 1;ζ)

(1− ζ)1−ã2
(62)

as limζ→1(1− ζ) is finite and equal to zero, we can rewrite this expression as
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lim
ζ→1
(1− ζ)2F1(ã2, b̃2; b̃2 + 1;ζ)

(1− ζ)1−ã2
=
�

lim
ζ→1
(1− ζ)
�

�

lim
ζ→1

2F1(ã2, b̃2; b̃2 + 1;ζ)
(1− ζ)1−ã2

�

(63)

if the second limit on the right hand side in the above equation is finite. 15.4.23 in DLMF (URL) states that

lim
ζ→1

2F1(a, b; c; z)
(1− z)c−a−b

=
Γ (c)Γ (a+ b− c)
Γ (a)Γ (b)

(64)

if ℜ(c − a − b) < 0. Applied to our case, c − a − b = 1 + b̃2 − ã2 − b̃2 = 1 − ã2 = −
α

1−α < 0.

Furthermore, Γ (c)Γ (a+b−c)
Γ (a)Γ (b) = Γ (b̃2+1)Γ (ã2−1)

Γ (ã2)Γ (b̃2)
= b̃2

ã2−1 which is finite. Hence, limζ→1(1−ζ) 2F1(ã2,b̃2;b̃2+1;ζ)
(1−ζ)1−ã2

= 0

and limζ→1 K0 − K0 = K0.

The critical term in the denominator of
K0−K0
S0−S0

is 2F1(ã2, b̃2 − 1; b̃2 + 1;ζ). As ∂ 2F1(ã2,b̃2−1;b̃2+1;ζ)
∂ ζ =

ã2(b̃2−1)
b̃2+1 2F1(ã2 + 1, b̃2; b̃2 + 2;ζ) > 0 for ζ < 1, S0 − S0 declines with ζ in this range. 15.3.6 in Abramowitz

and Stegun (1972) implies that limζ→1 2F1(ã2, b̃2−1; b̃2+1;ζ) = Γ (b̃2+1)Γ (2−ã2)
Γ (b̃2+1−ã2)Γ (2)

if 2− ã2 =
1−2α
1−α > 0 which

is the case for α < 1
2 . In case α > 1

2 we find 2F1(ã2, b̃2 − 1; b̃2 + 1;ζ)→∞ as ζ→ 1. In both cases, it is

possible that S0 − S0 turns negative as ζ grows for ζ < 1. Define ζ̄ as

ζ̄=ζ≤1 |S0 −
C

A0
ϕ
− 1

1−α
2

1
ψ2

1

b̃2(b̃2 − 1)
2F1(ã2, b̃2 − 1; b̃2 + 1;ζ)|, (65)

As S0 − S0 is decreasing in ζ for ζ < 1, the admissible range for a solution to the present problem has

the upper bound ζ̄. Therefore, if ζ̄ < 1 (ζ̄= 1) we find S0 − S0|ζ=ζ̄ = 0 (S0 − S0|ζ=ζ̄ ≥ 0).

Lastly, we turn to
K0−K0
S0−S0

as ζ → −∞. Again, we start with the nominator K0 − K0 = K0 − C 1
ψ (1 −

ζ)ã2 2F1(ã2, b̃2; b̃2+1;ζ). We know already that (1−ζ)ã2 2F1(ã2, b̃2; b̃2+1;ζ) is decreasing in ζ for ζ < 1.

Obviously, K0 − K0 then declines as ζ→−∞. 15.3.4 in Abramowitz and Stegun (1972) states that

2F1(a, b; c; z) = (1− z)−a
2F1(a, c − b; c;

z
z − 1

) (66)

which implies for the present case

(1− ζ)ã2
2F1(ã2, b̃2; b̃2 + 1;ζ) = 2F1(ã2, 1; b̃2 + 1;

ζ

ζ− 1
). (67)

As ã2, b̃2 + 1> 0 and limζ→−∞
ζ
ζ−1 = 1, limζ→−∞(1−ζ)ã2 2F1(ã2, b̃2; b̃2 + 1;ζ) =∞. This implies

that K0 − K0 becomes necessarily negative if ζ becomes too small. The range for admissible values for ζ is

therefore bounded from below at ζ which satisfies the condition

K0 = C
1
ψ

1

b̃2
(1− ζ)ã2

2F1(ã2, b̃2; b̃2 + 1;ζ). (68)

We observe limζ→ζ
K0−K0
S0−S0

= 0.

Taken together, if ζ < ζ̄ and ζ̄ < 1, limζ→ζ̄
K0−K0
S0−S0

→∞. If if ζ < ζ̄, ζ̄= 1,limζ→ζ̄
K0−K0
S0−S0

either diverges

to infinity or a strictly positive constant. The latter occurs if S0 − S0 ̸= 0 for ζ ≤ 1 or if α < 1
2 and S0 − S0 = 0

for ζ= 1. In all possible cases we therefore observe limζ→ζ̄
K0−K0
S0−S0

> limζ→ζ̄
K+0
S+0

.

Furthermore, if ζ < ζ̄ we know that limζ→ζ
K0−K0
S0−S0

= 0 and limζ→ζ
K+0
S+0
> 0 as

K+0
S+0

is decreasing in ζ for
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ζ < 1 and approaches 0 as ζ→ 1.

If it happens that ζ= ζ̄, this value is the unique solution to the initial value problem. If we find ζ > ζ̄, there

is no solution to the initial value problem because initial endowments K0, S0 are too low to allow for subsistence

consumption C .

This proves that a unique solution always exits if and only if ζ≤ ζ̄.

H: Sustainability present values: PV [Xs]t denotes the present value of Xs at time t for s ∈ [t,∞).
Discounting uses the interest rate rs given in (35). We start by evaluating the present value of a consumption

stream C̄t − C that is constant from t onwards:

PV (C̄t − C)t =

∫ ∞

t
(C̄t − C)e−
∫ s

t rτdτds

With rτ given by (35), xτ = e−ψτ, and ψ= 1−α
α (γ+δ)

−
∫ s

t
rτdτ = −
∫ s

t
(γ+δ)(1− ζ0 xτ)

−1 −δdτ

= (γ+δ)

∫ s

t

1
ψ
(1− ζ0 xτ)

−1 x−1
τ d xτ +δ(s− t)

=
α

1−α

∫ xs

x t

(1− ζ0 xτ)
−1 x−1

τ d xτ +δ(s− t)

=
α

1−α

�

ln
xτ

1− xτ

�xs

x t

+δ(s− t).

Therefore,

e−
∫ s

t rτdτ =
�

xs

x t

1− ζ0 x t

1− ζ0 xs

�
α

1−α
eδ(s−t) (69)

and

PV (C̄t − C)t = (C̄t − C)e−δt x
− α

1−α
t (1− ζ0 x t)

α
1−α

∫ ∞

t
x

α
1−α
s (1− ζ0 xs)

− α
1−α eδsds.

Using xτ = e−ψτ, defining x = xs
x t

and noting that d x = x−1
t d xs = −ψx−1

t xsds gives

PV (C̄t − C)t = (C̄t − C)(1− ζ0 x t)
α

1−α
1
ψ

∫ 1

0
x

α
1−α

γ
δ+γ−1(1− ζ0 x t x)−

α
1−α d x

= (C̄t − C)(1− ζ0 x t)
α

1−α
1

ψ(b̃2 − 1)
2F1(ã2 − 1, b̃2 − 1; b̃2;ζ0 x t),

where ã2 and b̃2 are defined as in (19).

The present value of welfare-maximizing consumption in excess of C is



#2302 Bremen Papers on Economics & Innovation

Subsistence Consumption and Natural Resource Depletion:
Can resource-rich low-income countries realize sustainable consumption paths?

50 / 56

PV (Cs − C)t =

∫ ∞

t
(Cs − C)e−
∫ s

t rτdτds,

where Cs − C is given by (32). Using (69 and applying again the definitions from above gives

PV (Cs − C)t = ϕ
α

(1−α)η
2

�

µ0

(1−α)A0

�− 1
η
∫ ∞

t
x

α(ρ−γ)
(1−α)(γ+δ)η
s (1− ζ0 xs)

α
1−α

1
η eδs
�

xs

x t

1− ζ0 x t

1− ζ0 xs

�
α

1−α
eδ(s−t)ds

=
C0 − C

ψ
(1− ζ0)

ã1−ã2 x
(ã1−ã2)

γ−ρ
γ+δ

t (1− ζ0 x t)
α

1−α

∫ 1

0
x (b̃1−1)−1(1− ζ0 x t x)−(ã1−1)d x

=
C0 − C

ψ
(1− ζ0)

ã1−ã2 x
(ã1−ã2)

γ−ρ
γ+δ

t (1− ζ0 x t)
α

1−α
1

b̃1 − 1
2F1(ã1 − 1, b̃1 − 1; b̃1;ζ0 x t)

Equating PV (C̄t − C)t and PV (Cs − C)t gives C̄t − C as

C̄t − C = ϕ
α

(1−α)η
2

�

µ0

(1−α)A0

�− 1
η b̃2 − 1

b̃1 − 1
x

α(ρ−γ)
(1−α)(γ+δ)η
t

2F1(ã1 − 1, b̃1 − 1; b̃1;ζ0 x t)

2F1(ã2 − 1, b̃2 − 1; b̃2;ζ0 x t)

= (C0 − C)(1− ζ0)
ã1−ã2

b̃2 − 1

b̃1 − 1
2F1(ã1 − 1, b̃1 − 1; b̃1;ζ0 x t)

2F1(ã2 − 1, b̃2 − 1; b̃2;ζ0 x t)
x
(ã1−ã2)

γ−ρ
γ+δ

t , (70)

where we used the definition of ζ0 = 1 − ϕ1
ϕ2

and the first order condition for C0 from (6) at t = 0. We

note that PV (C̄t − C)t and PV (Cs − C)t are in general depending on t . For t →∞ and, hence, x t → 0

we arrive at the steady state. In steady state, the interest rate is r = γ and the growth rate of consumption is

g = 1
η (γ−ρ). The present values become

lim
t→∞

PV (C̄t − C)t = lim
t→∞

(C̄t − C)(1− ζ0 x t)
α

1−α
1

ψ(b̃2 − 1)
2F1(ã2 − 1, b̃2 − 1; b̃2;ζ0 x t)

=
limt→∞(C̄t − C)

γ
=

limt→∞(C̄t − C)
r

,

lim
t→∞

PV (Cs − C)t = lim
t→∞

C0 − C

ψ
(1− ζ0)

ã1−ã2ϕ
α

(1−α)η
2

�

µ0

(1−α)A0

�− 1
η

x
(ã1−ã2)

γ−ρ
γ+δ

t (1− ζ0 x t)
α

1−α ×

1

b̃1 − 1
2F1(ã1 − 1, b̃1 − 1; b̃1;ζ0 x t)

= (1− ζ0)
1−ã1

C0 − C

r − g
lim

t→∞
x
(ã1−ã2)

γ−ρ
γ+δ

t .

We note that the steady state present value of optimal consumption depends on the initial conditions in

our economy. Equating the present values as t →∞ gives
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lim
t→∞

C̄t − C =











0 for ρ > γ,

(1− ζ0)1−ã1(C0 − C) r
r−g for ρ = γ,

(1− ζ0)1−ã1(C0 − C) r
r−g limt→∞ x

(ã1−ã2)
γ−ρ
γ+δ

t →∞ for ρ < γ.

Now we compute the maximum affordable consumption Cmax
t from time t ≥ 0 onward while the econ-

omy was following the welfare-maximizing consumption path for s ∈ [0, t). (33) gives Kt as the avail-

able capital endowment in t . To arrive at Cmax
t , we use (33) once again at Ct − C = 0 with Ct − C =

(C0 − C)(1− ζ)ã1−ã2 x
γ−ρ
γ+δ (ã1−ã2)
t (1− ζx t)ã2−ã1 from (32) and C = Cmax

t . It follows that Cmax
t = ψKt(1−

ζ0 x t)−ã2 b̃2

2F1(ã2,b̃2;b̃2+1;ζ0 x t )
which can be written by using (33) as

Cmax
t − C = (1− ζ0)

ã1−ã2(C0 − C)
b̃2

b̃1

2F1(ã1, b̃1; b̃1 + 1;ζ0 x t)

2F1(ã2, b̃2; b̃2 + 1;ζ0 x t)
x
(ã1−ã2)

γ−ρ
γ+δ

t .

Cmax
0 , the attainable maximum constant consumption from t = 0 onwards can be found be using (33) for

η→∞ and, hence, ã1→ ã2, b̃1→ b̃2

Cmax
0 =ψK0(1− ζ0)

−ã2
b̃2

2F1(ã2, b̃2; b̃2 + 1;ζ0)
.

Dividing this by (70) gives (40) in the main text. As t →∞, x t → 0 and 2F1(a, b; b + 1; zx t)→ 1 (see

Appendix E). This gives

lim
t→∞

Cmax
t − C

C̄t − C
=

b̃1 − 1

b̃1

b̃2

b̃2 − 1
.

We observe that

b̃1 − 1

b̃2 − 1
= 1+

α(ρ − γ)
αηγ

,

b̃2

b̃1
=
�

1+
α(ρ − γ)

αηγ+ (1−α)η(γ+ρ)

�−1

.

Given the admissible parameter values, b̃1−1
b̃1

b̃2

b̃2−1
> (=,<)1 for γ < (=,>)ρ.
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